REVA-QCAV/train.py

273 lines
8.9 KiB
Python
Raw Normal View History

import argparse
import logging
from pathlib import Path
import torch
2017-08-19 08:59:51 +00:00
import torch.nn as nn
import torch.nn.functional as F
import wandb
from torch import optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
from evaluate import evaluate
from unet import UNet
from utils.data_loading import BasicDataset, CarvanaDataset
from utils.dice_score import dice_loss
dir_img = Path("./data/imgs/")
dir_mask = Path("./data/masks/")
dir_checkpoint = Path("./checkpoints/")
def train_net(
net,
device,
epochs: int = 5,
batch_size: int = 1,
learning_rate: float = 1e-5,
val_percent: float = 0.1,
save_checkpoint: bool = True,
img_scale: float = 0.5,
amp: bool = False,
):
# 1. Create dataset
try:
dataset = CarvanaDataset(dir_img, dir_mask, img_scale)
except (AssertionError, RuntimeError):
dataset = BasicDataset(dir_img, dir_mask, img_scale)
# 2. Split into train / validation partitions
n_val = int(len(dataset) * val_percent)
n_train = len(dataset) - n_val
train_set, val_set = random_split(dataset, [n_train, n_val], generator=torch.Generator().manual_seed(0))
# 3. Create data loaders
loader_args = dict(batch_size=batch_size, num_workers=4, pin_memory=True)
train_loader = DataLoader(train_set, shuffle=True, **loader_args)
val_loader = DataLoader(val_set, shuffle=False, drop_last=True, **loader_args)
# (Initialize logging)
experiment = wandb.init(project="U-Net", resume="allow", anonymous="must")
experiment.config.update(
dict(
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate,
val_percent=val_percent,
save_checkpoint=save_checkpoint,
img_scale=img_scale,
amp=amp,
)
)
logging.info(
f"""Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {learning_rate}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_checkpoint}
Device: {device.type}
Images scaling: {img_scale}
Mixed Precision: {amp}
"""
)
# 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for AMP
optimizer = optim.RMSprop(net.parameters(), lr=learning_rate, weight_decay=1e-8, momentum=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, "max", patience=2) # goal: maximize Dice score
grad_scaler = torch.cuda.amp.GradScaler(enabled=amp)
criterion = nn.CrossEntropyLoss()
global_step = 0
# 5. Begin training
for epoch in range(1, epochs + 1):
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f"Epoch {epoch}/{epochs}", unit="img") as pbar:
for batch in train_loader:
images = batch["image"]
true_masks = batch["mask"]
assert images.shape[1] == net.n_channels, (
f"Network has been defined with {net.n_channels} input channels, "
f"but loaded images have {images.shape[1]} channels. Please check that "
"the images are loaded correctly."
)
images = images.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=torch.long)
with torch.cuda.amp.autocast(enabled=amp):
masks_pred = net(images)
loss = criterion(masks_pred, true_masks) + dice_loss(
F.softmax(masks_pred, dim=1).float(),
F.one_hot(true_masks, net.n_classes).permute(0, 3, 1, 2).float(),
multiclass=True,
)
optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
2017-08-19 08:59:51 +00:00
pbar.update(images.shape[0])
global_step += 1
epoch_loss += loss.item()
experiment.log({"train loss": loss.item(), "step": global_step, "epoch": epoch})
pbar.set_postfix(**{"loss (batch)": loss.item()})
# Evaluation round
division_step = n_train // (10 * batch_size)
if division_step > 0:
if global_step % division_step == 0:
histograms = {}
for tag, value in net.named_parameters():
tag = tag.replace("/", ".")
histograms["Weights/" + tag] = wandb.Histogram(value.data.cpu())
histograms["Gradients/" + tag] = wandb.Histogram(value.grad.data.cpu())
val_score = evaluate(net, val_loader, device)
scheduler.step(val_score)
logging.info("Validation Dice score: {}".format(val_score))
experiment.log(
{
"learning rate": optimizer.param_groups[0]["lr"],
"validation Dice": val_score,
"images": wandb.Image(images[0].cpu()),
"masks": {
"true": wandb.Image(true_masks[0].float().cpu()),
"pred": wandb.Image(
torch.softmax(masks_pred, dim=1).argmax(dim=1)[0].float().cpu()
),
},
"step": global_step,
"epoch": epoch,
**histograms,
}
)
if save_checkpoint:
Path(dir_checkpoint).mkdir(parents=True, exist_ok=True)
torch.save(net.state_dict(), str(dir_checkpoint / "checkpoint_epoch{}.pth".format(epoch)))
logging.info(f"Checkpoint {epoch} saved!")
def get_args():
parser = argparse.ArgumentParser(
description="Train the UNet on images and target masks",
)
parser.add_argument(
"--epochs",
"-e",
metavar="E",
type=int,
default=5,
help="Number of epochs",
)
parser.add_argument(
"--batch-size",
"-b",
dest="batch_size",
metavar="B",
type=int,
default=1,
help="Batch size",
)
parser.add_argument(
"--learning-rate",
"-l",
metavar="LR",
type=float,
default=1e-5,
help="Learning rate",
dest="lr",
)
parser.add_argument(
"--load",
"-f",
type=str,
default=False,
help="Load model from a .pth file",
)
parser.add_argument(
"--scale",
"-s",
type=float,
default=0.5,
help="Downscaling factor of the images",
)
parser.add_argument(
"--validation",
"-v",
dest="val",
type=float,
default=10.0,
help="Percent of the data that is used as validation (0-100)",
)
parser.add_argument(
"--amp",
action="store_true",
default=False,
help="Use mixed precision",
)
parser.add_argument(
"--bilinear",
action="store_true",
default=False,
help="Use bilinear upsampling",
)
parser.add_argument(
"--classes",
"-c",
type=int,
default=2,
help="Number of classes",
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device {device}")
# Change here to adapt to your data
# n_channels=3 for RGB images
# n_classes is the number of probabilities you want to get per pixel
net = UNet(n_channels=3, n_classes=args.classes, bilinear=args.bilinear)
logging.info(
f"Network:\n"
f"\t{net.n_channels} input channels\n"
f"\t{net.n_classes} output channels (classes)\n"
f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling'
)
2017-08-19 08:59:51 +00:00
if args.load:
net.load_state_dict(torch.load(args.load, map_location=device))
logging.info(f"Model loaded from {args.load}")
net.to(device=device)
2017-08-19 08:59:51 +00:00
try:
train_net(
net=net,
epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.lr,
device=device,
img_scale=args.scale,
val_percent=args.val / 100,
amp=args.amp,
)
except KeyboardInterrupt:
torch.save(net.state_dict(), "INTERRUPTED.pth")
logging.info("Saved interrupt")
raise