mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-08 14:39:00 +00:00
Removed unused function and general cleanup
Former-commit-id: c34a455f1722e0b899e9e92c7766b83a9a641980
This commit is contained in:
parent
0da4ad7753
commit
8008b77af6
12
eval.py
12
eval.py
|
@ -1,11 +1,11 @@
|
|||
import torch
|
||||
from myloss import dice_coeff
|
||||
import numpy as np
|
||||
from torch.autograd import Variable
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Variable
|
||||
|
||||
from utils import dense_crf, plot_img_mask
|
||||
from myloss import dice_coeff
|
||||
from utils import dense_crf
|
||||
|
||||
|
||||
def eval_net(net, dataset, gpu=False):
|
||||
|
@ -47,7 +47,7 @@ def eval_net(net, dataset, gpu=False):
|
|||
ax3 = fig.add_subplot(1, 4, 3)
|
||||
ax3.imshow((y_pred > 0.5))
|
||||
|
||||
Q = dense_crf(((X*255).round()).astype(np.uint8), y_pred)
|
||||
Q = dense_crf(((X * 255).round()).astype(np.uint8), y_pred)
|
||||
ax4 = fig.add_subplot(1, 4, 4)
|
||||
print(Q)
|
||||
ax4.imshow(Q > 0.5)
|
||||
|
|
14
myloss.py
14
myloss.py
|
@ -1,23 +1,20 @@
|
|||
|
||||
#
|
||||
# myloss.py : implementation of the Dice coeff and the associated loss
|
||||
#
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch.nn.modules.loss import _Loss
|
||||
from torch.autograd import Function, Variable
|
||||
|
||||
|
||||
class DiceCoeff(Function):
|
||||
"""Dice coeff for individual examples"""
|
||||
|
||||
def forward(self, input, target):
|
||||
self.save_for_backward(input, target)
|
||||
self.inter = torch.dot(input, target) + 0.0001
|
||||
self.union = torch.sum(input) + torch.sum(target) + 0.0001
|
||||
|
||||
t = 2*self.inter.float()/self.union.float()
|
||||
t = 2 * self.inter.float() / self.union.float()
|
||||
return t
|
||||
|
||||
# This function has only a single output, so it gets only one gradient
|
||||
|
@ -45,9 +42,4 @@ def dice_coeff(input, target):
|
|||
for i, c in enumerate(zip(input, target)):
|
||||
s = s + DiceCoeff().forward(c[0], c[1])
|
||||
|
||||
return s / (i+1)
|
||||
|
||||
|
||||
class DiceLoss(_Loss):
|
||||
def forward(self, input, target):
|
||||
return 1 - dice_coeff(F.sigmoid(input), target)
|
||||
return s / (i + 1)
|
||||
|
|
13
predict.py
13
predict.py
|
@ -1,15 +1,12 @@
|
|||
import argparse
|
||||
|
||||
import numpy
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Variable
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy
|
||||
from PIL import Image
|
||||
import argparse
|
||||
import os
|
||||
|
||||
from utils import *
|
||||
|
||||
from unet import UNet
|
||||
from utils import *
|
||||
|
||||
|
||||
def predict_img(net, full_img, gpu=False):
|
||||
|
@ -50,7 +47,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument('--model', '-m', default='MODEL.pth',
|
||||
metavar='FILE',
|
||||
help="Specify the file in which is stored the model"
|
||||
" (default : 'MODEL.pth')")
|
||||
" (default : 'MODEL.pth')")
|
||||
parser.add_argument('--input', '-i', metavar='INPUT', nargs='+',
|
||||
help='filenames of input images', required=True)
|
||||
parser.add_argument('--output', '-o', metavar='INPUT', nargs='+',
|
||||
|
|
|
@ -1,17 +1,14 @@
|
|||
# used to predict all test images and encode results in a csv file
|
||||
|
||||
import os
|
||||
from PIL import Image
|
||||
from predict import *
|
||||
from utils import encode
|
||||
from unet import UNet
|
||||
|
||||
|
||||
def submit(net, gpu=False):
|
||||
dir = 'data/test/'
|
||||
|
||||
N = len(list(os.listdir(dir)))
|
||||
with open('SUBMISSION.csv', 'a') as f:
|
||||
|
||||
f.write('img,rle_mask\n')
|
||||
for index, i in enumerate(os.listdir(dir)):
|
||||
print('{}/{}'.format(index, N))
|
||||
|
|
30
train.py
30
train.py
|
@ -1,17 +1,16 @@
|
|||
import sys
|
||||
from optparse import OptionParser
|
||||
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torch.nn.functional as F
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import optim
|
||||
from torch.autograd import Variable
|
||||
|
||||
from utils import *
|
||||
from myloss import DiceLoss
|
||||
from eval import eval_net
|
||||
from unet import UNet
|
||||
from torch.autograd import Variable
|
||||
from torch import optim
|
||||
from optparse import OptionParser
|
||||
import sys
|
||||
import os
|
||||
from utils import *
|
||||
|
||||
|
||||
def train_net(net, epochs=5, batch_size=2, lr=0.1, val_percent=0.05,
|
||||
|
@ -39,15 +38,14 @@ def train_net(net, epochs=5, batch_size=2, lr=0.1, val_percent=0.05,
|
|||
|
||||
N_train = len(iddataset['train'])
|
||||
|
||||
train = get_imgs_and_masks(iddataset['train'], dir_img, dir_mask)
|
||||
val = get_imgs_and_masks(iddataset['val'], dir_img, dir_mask)
|
||||
|
||||
optimizer = optim.SGD(net.parameters(),
|
||||
lr=lr, momentum=0.9, weight_decay=0.0005)
|
||||
criterion = nn.BCELoss()
|
||||
|
||||
for epoch in range(epochs):
|
||||
print('Starting epoch {}/{}.'.format(epoch+1, epochs))
|
||||
print('Starting epoch {}/{}.'.format(epoch + 1, epochs))
|
||||
|
||||
# reset the generators
|
||||
train = get_imgs_and_masks(iddataset['train'], dir_img, dir_mask)
|
||||
val = get_imgs_and_masks(iddataset['val'], dir_img, dir_mask)
|
||||
|
||||
|
@ -80,7 +78,7 @@ def train_net(net, epochs=5, batch_size=2, lr=0.1, val_percent=0.05,
|
|||
loss = criterion(probs_flat, y_flat.float())
|
||||
epoch_loss += loss.data[0]
|
||||
|
||||
print('{0:.4f} --- loss: {1:.6f}'.format(i*batch_size/N_train,
|
||||
print('{0:.4f} --- loss: {1:.6f}'.format(i * batch_size / N_train,
|
||||
loss.data[0]))
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
@ -89,13 +87,13 @@ def train_net(net, epochs=5, batch_size=2, lr=0.1, val_percent=0.05,
|
|||
|
||||
optimizer.step()
|
||||
|
||||
print('Epoch finished ! Loss: {}'.format(epoch_loss/i))
|
||||
print('Epoch finished ! Loss: {}'.format(epoch_loss / i))
|
||||
|
||||
if cp:
|
||||
torch.save(net.state_dict(),
|
||||
dir_checkpoint + 'CP{}.pth'.format(epoch+1))
|
||||
dir_checkpoint + 'CP{}.pth'.format(epoch + 1))
|
||||
|
||||
print('Checkpoint {} saved !'.format(epoch+1))
|
||||
print('Checkpoint {} saved !'.format(epoch + 1))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
|
||||
#
|
||||
# load.py : utils on generators / lists of ids to transform from strings to
|
||||
# cropped images and masks
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
from PIL import Image
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from .utils import resize_and_crop, get_square, normalize
|
||||
|
||||
|
||||
|
@ -41,6 +41,7 @@ def get_imgs_and_masks(ids, dir_img, dir_mask):
|
|||
|
||||
return zip(imgs_normalized, masks)
|
||||
|
||||
|
||||
def get_full_img_and_mask(id, dir_img, dir_mask):
|
||||
im = Image.open(dir_img + id + '.jpg')
|
||||
mask = Image.open(dir_mask + id + '_mask.gif')
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import PIL
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_square(img, pos):
|
||||
"""Extract a left or a right square from PILimg shape : (H, W, C))"""
|
||||
|
@ -34,7 +34,7 @@ def batch(iterable, batch_size):
|
|||
b = []
|
||||
for i, t in enumerate(iterable):
|
||||
b.append(t)
|
||||
if (i+1) % batch_size == 0:
|
||||
if (i + 1) % batch_size == 0:
|
||||
yield b
|
||||
b = []
|
||||
|
||||
|
@ -46,7 +46,6 @@ def split_train_val(dataset, val_percent=0.05):
|
|||
dataset = list(dataset)
|
||||
length = len(dataset)
|
||||
n = int(length * val_percent)
|
||||
random.seed(42)
|
||||
random.shuffle(dataset)
|
||||
return {'train': dataset[:-n], 'val': dataset[-n:]}
|
||||
|
||||
|
@ -56,58 +55,16 @@ def normalize(x):
|
|||
|
||||
|
||||
def merge_masks(img1, img2, full_w):
|
||||
w = img1.shape[1]
|
||||
overlap = int(2 * w - full_w)
|
||||
h = img1.shape[0]
|
||||
|
||||
new = np.zeros((h, full_w), np.float32)
|
||||
|
||||
margin = 0
|
||||
|
||||
new[:, :full_w//2+1] = img1[:, :full_w//2+1]
|
||||
new[:, full_w//2+1:] = img2[:, -(full_w//2-1):]
|
||||
#new[:, w-overlap+1+margin//2:-(w-overlap+margin//2)] = (img1[:, -overlap+margin:] +
|
||||
# img2[:, :overlap-margin])/2
|
||||
new[:, :full_w // 2 + 1] = img1[:, :full_w // 2 + 1]
|
||||
new[:, full_w // 2 + 1:] = img2[:, -(full_w // 2 - 1):]
|
||||
|
||||
return new
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def encode(mask):
|
||||
"""mask : HxW"""
|
||||
plt.imshow(mask.transpose())
|
||||
plt.show()
|
||||
flat = mask.transpose().reshape(-1)
|
||||
enc = []
|
||||
i = 1
|
||||
|
||||
while i <= len(flat):
|
||||
if(flat[i-1]):
|
||||
s = i
|
||||
while(flat[i-1]):
|
||||
i += 1
|
||||
e = i-1
|
||||
enc.append(s)
|
||||
enc.append(e - s + 1)
|
||||
i += 1
|
||||
|
||||
plt.imshow(decode(enc))
|
||||
plt.show()
|
||||
return enc
|
||||
|
||||
def decode(list):
|
||||
mask = np.zeros((1280*1920), np.bool)
|
||||
|
||||
for i, e in enumerate(list):
|
||||
if(i%2 == 0):
|
||||
mask[e-1:e-2+list[i+1]] = True
|
||||
|
||||
mask = mask.reshape(1920, 1280).transpose()
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def rle_encode(mask_image):
|
||||
pixels = mask_image.flatten()
|
||||
# We avoid issues with '1' at the start or end (at the corners of
|
||||
|
@ -119,7 +76,3 @@ def rle_encode(mask_image):
|
|||
runs = np.where(pixels[1:] != pixels[:-1])[0] + 2
|
||||
runs[1::2] = runs[1::2] - runs[:-1:2]
|
||||
return runs
|
||||
|
||||
def full_process(filename):
|
||||
im = PIL.Image.open(filename)
|
||||
im = resize_and_crop(im)
|
||||
|
|
Loading…
Reference in a new issue