REVA-QCAV/eval.py

27 lines
658 B
Python
Raw Normal View History

import torch
2017-08-19 08:59:51 +00:00
import torch.nn.functional as F
from dice_loss import dice_coeff
2017-08-19 08:59:51 +00:00
def eval_net(net, dataset, gpu=False):
"""Evaluation without the densecrf with the dice coefficient"""
net.eval()
2017-08-19 08:59:51 +00:00
tot = 0
for i, b in enumerate(dataset):
img = b[0]
true_mask = b[1]
2017-08-19 08:59:51 +00:00
img = torch.from_numpy(img).unsqueeze(0)
true_mask = torch.from_numpy(true_mask).unsqueeze(0)
2017-08-19 08:59:51 +00:00
if gpu:
img = img.cuda()
true_mask = true_mask.cuda()
2017-08-19 08:59:51 +00:00
mask_pred = net(img)[0]
mask_pred = (F.sigmoid(mask_pred) > 0.5).float()
2017-08-19 08:59:51 +00:00
tot += dice_coeff(mask_pred, true_mask).item()
2017-08-19 08:59:51 +00:00
return tot / i