REVA-QCAV/utils/utils.py
milesial 8008b77af6 Removed unused function and general cleanup
Former-commit-id: c34a455f1722e0b899e9e92c7766b83a9a641980
2018-04-09 05:15:24 +02:00

79 lines
1.8 KiB
Python

import random
import numpy as np
def get_square(img, pos):
"""Extract a left or a right square from PILimg shape : (H, W, C))"""
img = np.array(img)
h = img.shape[0]
if pos == 0:
return img[:, :h]
else:
return img[:, -h:]
def resize_and_crop(pilimg, scale=0.5, final_height=None):
w = pilimg.size[0]
h = pilimg.size[1]
newW = int(w * scale)
newH = int(h * scale)
if not final_height:
diff = 0
else:
diff = newH - final_height
img = pilimg.resize((newW, newH))
img = img.crop((0, diff // 2, newW, newH - diff // 2))
return img
def batch(iterable, batch_size):
"""Yields lists by batch"""
b = []
for i, t in enumerate(iterable):
b.append(t)
if (i + 1) % batch_size == 0:
yield b
b = []
if len(b) > 0:
yield b
def split_train_val(dataset, val_percent=0.05):
dataset = list(dataset)
length = len(dataset)
n = int(length * val_percent)
random.shuffle(dataset)
return {'train': dataset[:-n], 'val': dataset[-n:]}
def normalize(x):
return x / 255
def merge_masks(img1, img2, full_w):
h = img1.shape[0]
new = np.zeros((h, full_w), np.float32)
new[:, :full_w // 2 + 1] = img1[:, :full_w // 2 + 1]
new[:, full_w // 2 + 1:] = img2[:, -(full_w // 2 - 1):]
return new
def rle_encode(mask_image):
pixels = mask_image.flatten()
# We avoid issues with '1' at the start or end (at the corners of
# the original image) by setting those pixels to '0' explicitly.
# We do not expect these to be non-zero for an accurate mask,
# so this should not harm the score.
pixels[0] = 0
pixels[-1] = 0
runs = np.where(pixels[1:] != pixels[:-1])[0] + 2
runs[1::2] = runs[1::2] - runs[:-1:2]
return runs