mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-09 15:02:03 +00:00
35f955cbf8
Former-commit-id: c75d9c075e18add5cd8683faf827937393bf2c94
30 lines
882 B
Python
30 lines
882 B
Python
import torch
|
|
import torch.nn.functional as F
|
|
from tqdm import tqdm
|
|
|
|
from dice_loss import dice_coeff
|
|
|
|
|
|
def eval_net(net, loader, device, n_val):
|
|
"""Evaluation without the densecrf with the dice coefficient"""
|
|
net.eval()
|
|
tot = 0
|
|
|
|
for i, b in tqdm(enumerate(loader), desc='Validation round', unit='img'):
|
|
imgs = b['image']
|
|
true_masks = b['mask']
|
|
|
|
imgs = imgs.to(device=device, dtype=torch.float32)
|
|
true_masks = true_masks.to(device=device, dtype=torch.float32)
|
|
|
|
mask_pred = net(imgs)
|
|
|
|
for true_mask in true_masks:
|
|
mask_pred = (mask_pred > 0.5).float()
|
|
if net.n_classes > 1:
|
|
tot += F.cross_entropy(mask_pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0)).item()
|
|
else:
|
|
tot += dice_coeff(mask_pred, true_mask.squeeze(dim=1)).item()
|
|
|
|
return tot / n_val
|