REVA-QCAV/eval.py
milesial 8ed1e09b2a Better support for multiclass
Former-commit-id: 76bebf5f241f579fda7048f5e4a87ee9d49aa423
2019-10-30 19:54:57 +01:00

32 lines
906 B
Python

import torch
import torch.nn.functional as F
from tqdm import tqdm
from dice_loss import dice_coeff
def eval_net(net, dataset, device, n_val):
"""Evaluation without the densecrf with the dice coefficient"""
net.eval()
tot = 0
for i, b in tqdm(enumerate(dataset), total=n_val, desc='Validation round', unit='img'):
img = b[0]
true_mask = b[1]
img = torch.from_numpy(img).unsqueeze(0)
true_mask = torch.from_numpy(true_mask).unsqueeze(0)
img = img.to(device=device)
true_mask = true_mask.to(device=device)
mask_pred = net(img).squeeze(dim=0)
mask_pred = (mask_pred > 0.5).float()
if net.n_classes > 1:
tot += F.cross_entropy(mask_pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0)).item()
else:
tot += dice_coeff(mask_pred, true_mask.squeeze(dim=1)).item()
return tot / n_val