REVA-QCAV/README.md
Laurent Fainsin 41224983f7 chore: update readme
Former-commit-id: 8b5fb45bb5b3f2d77677867f78d4048475c9c60f [formerly b6a07ef688a7ae36b4326b52e0c511da1d85ff95]
Former-commit-id: add01c666a028922479909e31572097b5dbbee30
2022-09-13 11:17:42 +02:00

3.4 KiB
Raw Blame History

sphereDetect

sphereDetect is a simple neural network, based on a Mask R-CNN, to detect spherical landmarks for image calibration.

Built with

Frameworks

Tools

Getting started (with docker and vscode)

Requirements

Installation

Clone the repository:

git clone git@git.inpt.fr:fainsil/pytorch-reva.git

Start VS Code:

vscode pytorch-reva

Install the Remote Development extension pack.
Modify variables UID and GID in .devcontainer/Dockerfile if necessary. Reopen the workspace in devcontainer mode.

Usage

Configure Weights & Biases (local) server at http://localhost:8080, and login:

wandb login --host http://localhost:8080

Press F5 to launch src/train.py in debug mode (with breakpoints, slower)
or press Ctrl+F5 to launch src/train.py in release mode.

Getting started (without docker)

Requirements

Installation

Clone the repository:

git clone git@git.inpt.fr:fainsil/pytorch-reva.git
cd pytorch-reva

Install the dependencies:

poetry install --with all

Usage

Activate python environment:

poetry shell

Configure Weights & Biases (local) server, and login:

wandb server start
wandb login --host http://localhost:8080

Start a training:

python src/train.py

License

Distributed under the MIT license.
See LICENSE for more information.

Contact

Laurent Fainsin [loʁɑ̃ fɛ̃zɛ̃]
<laurent@fainsin.bzh>