Initial commit

This commit is contained in:
HuguesTHOMAS 2020-04-09 17:13:27 -04:00
parent 5efecbbe20
commit 3d05a41368
11 changed files with 3017 additions and 1088 deletions

View file

@ -52,7 +52,7 @@ from utils.config import bcolors
class S3DISDataset(PointCloudDataset): class S3DISDataset(PointCloudDataset):
"""Class to handle Modelnet 40 dataset.""" """Class to handle S3DIS dataset."""
def __init__(self, config, set='training', use_potentials=True, load_data=True): def __init__(self, config, set='training', use_potentials=True, load_data=True):
""" """
@ -138,7 +138,23 @@ class S3DISDataset(PointCloudDataset):
################ ################
# List of training files # List of training files
self.train_files = [join(ply_path, f + '.ply') for f in self.cloud_names] self.files = []
for i, f in enumerate(self.cloud_names):
if self.set == 'training':
if self.all_splits[i] != self.validation_split:
self.files += [join(ply_path, f + '.ply')]
elif self.set in ['validation', 'test', 'ERF']:
if self.all_splits[i] == self.validation_split:
self.files += [join(ply_path, f + '.ply')]
else:
raise ValueError('Unknown set for S3DIS data: ', self.set)
if self.set == 'training':
self.cloud_names = [f for i, f in enumerate(self.cloud_names)
if self.all_splits[i] != self.validation_split]
elif self.set in ['validation', 'test', 'ERF']:
self.cloud_names = [f for i, f in enumerate(self.cloud_names)
if self.all_splits[i] == self.validation_split]
if 0 < self.config.first_subsampling_dl <= 0.01: if 0 < self.config.first_subsampling_dl <= 0.01:
raise ValueError('subsampling_parameter too low (should be over 1 cm') raise ValueError('subsampling_parameter too low (should be over 1 cm')
@ -149,7 +165,7 @@ class S3DISDataset(PointCloudDataset):
self.input_labels = [] self.input_labels = []
self.pot_trees = [] self.pot_trees = []
self.num_clouds = 0 self.num_clouds = 0
self.validation_proj = [] self.test_proj = []
self.validation_labels = [] self.validation_labels = []
# Start loading # Start loading
@ -624,21 +640,11 @@ class S3DISDataset(PointCloudDataset):
# Load KDTrees # Load KDTrees
############## ##############
for i, file_path in enumerate(self.train_files): for i, file_path in enumerate(self.files):
# Restart timer # Restart timer
t0 = time.time() t0 = time.time()
# Skip split that is not in current set
if self.set == 'training':
if self.all_splits[i] == self.validation_split:
continue
elif self.set in ['validation', 'test', 'ERF']:
if self.all_splits[i] != self.validation_split:
continue
else:
raise ValueError('Unknown set for S3DIS data: ', self.set)
# Get cloud name # Get cloud name
cloud_name = self.cloud_names[i] cloud_name = self.cloud_names[i]
@ -714,17 +720,7 @@ class S3DISDataset(PointCloudDataset):
pot_dl = self.config.in_radius / 10 pot_dl = self.config.in_radius / 10
cloud_ind = 0 cloud_ind = 0
for i, file_path in enumerate(self.train_files): for i, file_path in enumerate(self.files):
# Skip split that is not in current set
if self.set == 'training':
if self.all_splits[i] == self.validation_split:
continue
elif self.set in ['validation', 'test', 'ERF']:
if self.all_splits[i] != self.validation_split:
continue
else:
raise ValueError('Unknown set for S3DIS data: ', self.set)
# Get cloud name # Get cloud name
cloud_name = self.cloud_names[i] cloud_name = self.cloud_names[i]
@ -769,12 +765,7 @@ class S3DISDataset(PointCloudDataset):
print('\nPreparing reprojection indices for testing') print('\nPreparing reprojection indices for testing')
# Get validation/test reprojection indices # Get validation/test reprojection indices
i_cloud = 0 for i, file_path in enumerate(self.files):
for i, file_path in enumerate(self.train_files):
# Skip split that is not in current set
if self.all_splits[i] != self.validation_split:
continue
# Restart timer # Restart timer
t0 = time.time() t0 = time.time()
@ -795,7 +786,7 @@ class S3DISDataset(PointCloudDataset):
labels = data['class'] labels = data['class']
# Compute projection inds # Compute projection inds
idxs = self.input_trees[i_cloud].query(points, return_distance=False) idxs = self.input_trees[i].query(points, return_distance=False)
#dists, idxs = self.input_trees[i_cloud].kneighbors(points) #dists, idxs = self.input_trees[i_cloud].kneighbors(points)
proj_inds = np.squeeze(idxs).astype(np.int32) proj_inds = np.squeeze(idxs).astype(np.int32)
@ -803,9 +794,8 @@ class S3DISDataset(PointCloudDataset):
with open(proj_file, 'wb') as f: with open(proj_file, 'wb') as f:
pickle.dump([proj_inds, labels], f) pickle.dump([proj_inds, labels], f)
self.validation_proj += [proj_inds] self.test_proj += [proj_inds]
self.validation_labels += [labels] self.validation_labels += [labels]
i_cloud += 1
print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0)) print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0))
print() print()
@ -819,6 +809,9 @@ class S3DISDataset(PointCloudDataset):
# Get original points # Get original points
data = read_ply(file_path) data = read_ply(file_path)
return np.vstack((data['x'], data['y'], data['z'])).T return np.vstack((data['x'], data['y'], data['z'])).T
# ---------------------------------------------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------------------------------------------
# #
# Utility classes definition # Utility classes definition

1407
datasets/SemanticKitti.py Normal file

File diff suppressed because it is too large Load diff

View file

@ -345,7 +345,7 @@ class PointCloudDataset(Dataset):
else: else:
# No pooling in the end of this layer, no pooling indices required # No pooling in the end of this layer, no pooling indices required
pool_i = np.zeros((0, 1), dtype=np.int32) pool_i = np.zeros((0, 1), dtype=np.int32)
pool_p = np.zeros((0, 3), dtype=np.float32) pool_p = np.zeros((0, 1), dtype=np.float32)
pool_b = np.zeros((0,), dtype=np.int32) pool_b = np.zeros((0,), dtype=np.int32)
# Reduce size of neighbors matrices by eliminating furthest point # Reduce size of neighbors matrices by eliminating furthest point

View file

@ -14,7 +14,6 @@
# Hugues THOMAS - 06/03/2020 # Hugues THOMAS - 06/03/2020
# #
from models.blocks import * from models.blocks import *
import numpy as np import numpy as np
@ -201,7 +200,7 @@ class KPFCNN(nn.Module):
Class defining KPFCNN Class defining KPFCNN
""" """
def __init__(self, config): def __init__(self, config, lbl_values, ign_lbls):
super(KPFCNN, self).__init__() super(KPFCNN, self).__init__()
############ ############
@ -214,6 +213,7 @@ class KPFCNN(nn.Module):
in_dim = config.in_features_dim in_dim = config.in_features_dim
out_dim = config.first_features_dim out_dim = config.first_features_dim
self.K = config.num_kernel_points self.K = config.num_kernel_points
self.C = len(lbl_values) - len(ign_lbls)
##################### #####################
# List Encoder blocks # List Encoder blocks
@ -303,21 +303,21 @@ class KPFCNN(nn.Module):
out_dim = out_dim // 2 out_dim = out_dim // 2
self.head_mlp = UnaryBlock(out_dim, config.first_features_dim, False, 0) self.head_mlp = UnaryBlock(out_dim, config.first_features_dim, False, 0)
self.head_softmax = UnaryBlock(config.first_features_dim, config.num_classes, False, 0) self.head_softmax = UnaryBlock(config.first_features_dim, self.C, False, 0)
################ ################
# Network Losses # Network Losses
################ ################
# List of valid labels (those not ignored in loss)
self.valid_labels = np.sort([c for c in lbl_values if c not in ign_lbls])
# Choose segmentation loss # Choose segmentation loss
if config.segloss_balance == 'none': if len(config.class_w) > 0:
self.criterion = torch.nn.CrossEntropyLoss() class_w = torch.from_numpy(np.array(config.class_w, dtype=np.float32))
elif config.segloss_balance == 'class': self.criterion = torch.nn.CrossEntropyLoss(weight=class_w, ignore_index=-1)
self.criterion = torch.nn.CrossEntropyLoss()
elif config.segloss_balance == 'batch':
self.criterion = torch.nn.CrossEntropyLoss()
else: else:
raise ValueError('Unknown segloss_balance:', config.segloss_balance) self.criterion = torch.nn.CrossEntropyLoss(ignore_index=-1)
self.offset_loss = config.offsets_loss self.offset_loss = config.offsets_loss
self.offset_decay = config.offsets_decay self.offset_decay = config.offsets_decay
self.output_loss = 0 self.output_loss = 0
@ -357,12 +357,18 @@ class KPFCNN(nn.Module):
:return: loss :return: loss
""" """
# Set all ignored labels to -1 and correct the other label to be in [0, C-1] range
target = - torch.ones_like(labels)
for i, c in enumerate(self.valid_labels):
target[labels == c] = i
# Reshape to have a minibatch size of 1
outputs = torch.transpose(outputs, 0, 1) outputs = torch.transpose(outputs, 0, 1)
outputs = outputs.unsqueeze(0) outputs = outputs.unsqueeze(0)
labels = labels.unsqueeze(0) target = target.unsqueeze(0)
# Cross entropy loss # Cross entropy loss
self.output_loss = self.criterion(outputs, labels) self.output_loss = self.criterion(outputs, target)
# Regularization of deformable offsets # Regularization of deformable offsets
self.reg_loss = self.offset_regularizer() self.reg_loss = self.offset_regularizer()
@ -370,8 +376,7 @@ class KPFCNN(nn.Module):
# Combined loss # Combined loss
return self.output_loss + self.reg_loss return self.output_loss + self.reg_loss
@staticmethod def accuracy(self, outputs, labels):
def accuracy(outputs, labels):
""" """
Computes accuracy of the current batch Computes accuracy of the current batch
:param outputs: logits predicted by the network :param outputs: logits predicted by the network
@ -379,9 +384,14 @@ class KPFCNN(nn.Module):
:return: accuracy value :return: accuracy value
""" """
# Set all ignored labels to -1 and correct the other label to be in [0, C-1] range
target = - torch.ones_like(labels)
for i, c in enumerate(self.valid_labels):
target[labels == c] = i
predicted = torch.argmax(outputs.data, dim=1) predicted = torch.argmax(outputs.data, dim=1)
total = labels.size(0) total = target.size(0)
correct = (predicted == labels).sum().item() correct = (predicted == target).sum().item()
return correct / total return correct / total

View file

@ -39,6 +39,7 @@ from utils.ply import read_ply
# Datasets # Datasets
from datasets.ModelNet40 import ModelNet40Dataset from datasets.ModelNet40 import ModelNet40Dataset
from datasets.S3DIS import S3DISDataset from datasets.S3DIS import S3DISDataset
from datasets.SemanticKitti import SemanticKittiDataset
# ---------------------------------------------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------------------------------------------
# #
@ -239,7 +240,7 @@ def load_multi_snap_clouds(path, dataset, file_i, only_last=False):
else: else:
for f in listdir(cloud_folder): for f in listdir(cloud_folder):
if f.endswith('.ply') and not f.endswith('sub.ply'): if f.endswith('.ply') and not f.endswith('sub.ply'):
if np.any([cloud_path.endswith(f) for cloud_path in dataset.train_files]): if np.any([cloud_path.endswith(f) for cloud_path in dataset.files]):
data = read_ply(join(cloud_folder, f)) data = read_ply(join(cloud_folder, f))
labels = data['class'] labels = data['class']
preds = data['preds'] preds = data['preds']
@ -971,20 +972,21 @@ def compare_convergences_SLAM(dataset, list_of_paths, list_of_names=None):
class_list = [dataset.label_to_names[label] for label in dataset.label_values class_list = [dataset.label_to_names[label] for label in dataset.label_values
if label not in dataset.ignored_labels] if label not in dataset.ignored_labels]
s = '{:^10}|'.format('mean') s = '{:^6}|'.format('mean')
for c in class_list: for c in class_list:
s += '{:^10}'.format(c) s += '{:^6}'.format(c[:4])
print(s) print(s)
print(10*'-' + '|' + 10*config.num_classes*'-') print(6*'-' + '|' + 6*config.num_classes*'-')
for path in list_of_paths: for path in list_of_paths:
# Get validation IoUs # Get validation IoUs
nc_model = dataset.num_classes - len(dataset.ignored_labels)
file = join(path, 'val_IoUs.txt') file = join(path, 'val_IoUs.txt')
val_IoUs = load_single_IoU(file, config.num_classes) val_IoUs = load_single_IoU(file, nc_model)
# Get Subpart IoUs # Get Subpart IoUs
file = join(path, 'subpart_IoUs.txt') file = join(path, 'subpart_IoUs.txt')
subpart_IoUs = load_single_IoU(file, config.num_classes) subpart_IoUs = load_single_IoU(file, nc_model)
# Get mean IoU # Get mean IoU
val_class_IoUs, val_mIoUs = IoU_class_metrics(val_IoUs, smooth_n) val_class_IoUs, val_mIoUs = IoU_class_metrics(val_IoUs, smooth_n)
@ -997,22 +999,21 @@ def compare_convergences_SLAM(dataset, list_of_paths, list_of_names=None):
all_subpart_mIoUs += [subpart_mIoUs] all_subpart_mIoUs += [subpart_mIoUs]
all_subpart_class_IoUs += [subpart_class_IoUs] all_subpart_class_IoUs += [subpart_class_IoUs]
s = '{:^10.1f}|'.format(100*subpart_mIoUs[-1]) s = '{:^6.1f}|'.format(100*subpart_mIoUs[-1])
for IoU in subpart_class_IoUs[-1]: for IoU in subpart_class_IoUs[-1]:
s += '{:^10.1f}'.format(100*IoU) s += '{:^6.1f}'.format(100*IoU)
print(s) print(s)
print(6*'-' + '|' + 6*config.num_classes*'-')
print(10*'-' + '|' + 10*config.num_classes*'-')
for snap_IoUs in all_val_class_IoUs: for snap_IoUs in all_val_class_IoUs:
if len(snap_IoUs) > 0: if len(snap_IoUs) > 0:
s = '{:^10.1f}|'.format(100*np.mean(snap_IoUs[-1])) s = '{:^6.1f}|'.format(100*np.mean(snap_IoUs[-1]))
for IoU in snap_IoUs[-1]: for IoU in snap_IoUs[-1]:
s += '{:^10.1f}'.format(100*IoU) s += '{:^6.1f}'.format(100*IoU)
else: else:
s = '{:^10s}'.format('-') s = '{:^6s}'.format('-')
for _ in range(config.num_classes): for _ in range(config.num_classes):
s += '{:^10s}'.format('-') s += '{:^6s}'.format('-')
print(s) print(s)
# Plots # Plots
@ -1038,7 +1039,7 @@ def compare_convergences_SLAM(dataset, list_of_paths, list_of_names=None):
#ax.set_yticks(np.arange(0.8, 1.02, 0.02)) #ax.set_yticks(np.arange(0.8, 1.02, 0.02))
displayed_classes = [0, 1, 2, 3, 4, 5, 6, 7] displayed_classes = [0, 1, 2, 3, 4, 5, 6, 7]
displayed_classes = [] #displayed_classes = []
for c_i, c_name in enumerate(class_list): for c_i, c_name in enumerate(class_list):
if c_i in displayed_classes: if c_i in displayed_classes:
@ -1410,14 +1411,14 @@ def S3DIS_first(old_result_limit):
return logs, logs_names return logs, logs_names
def S3DIS_(old_result_limit): def S3DIS_go(old_result_limit):
""" """
Test S3DIS. Test S3DIS.
""" """
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset. # Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-04-03_11-12-07' start = 'Log_2020-04-03_11-12-07'
end = 'Log_2020-04-25_19-30-17' end = 'Log_2020-04-07_15-30-17'
if end < old_result_limit: if end < old_result_limit:
res_path = 'old_results' res_path = 'old_results'
@ -1430,6 +1431,11 @@ def S3DIS_(old_result_limit):
# Give names to the logs (for legends) # Give names to the logs (for legends)
logs_names = ['R=2.0_r=0.04_Din=128_potential', logs_names = ['R=2.0_r=0.04_Din=128_potential',
'R=2.0_r=0.04_Din=64_potential', 'R=2.0_r=0.04_Din=64_potential',
'R=1.8_r=0.03',
'R=1.8_r=0.03_deeper',
'R=1.8_r=0.03_deform',
'R=2.0_r=0.03_megadeep',
'R=2.5_r=0.03_megadeep',
'test'] 'test']
logs_names = np.array(logs_names[:len(logs)]) logs_names = np.array(logs_names[:len(logs)])
@ -1437,17 +1443,52 @@ def S3DIS_(old_result_limit):
return logs, logs_names return logs, logs_names
def SemanticKittiFirst(old_result_limit):
"""
Test SematicKitti. First exps
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-04-07_15-30-17'
end = 'Log_2020-05-07_15-30-17'
if end < old_result_limit:
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = logs.astype('<U50')
# Give names to the logs (for legends)
logs_names = ['R=5.0_dl=0.04',
'R=5.0_dl=0.08',
'R=10.0_dl=0.08',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
if __name__ == '__main__': if __name__ == '__main__':
###################################################### ######################################################
# Choose a list of log to plot together for comparison # Choose a list of log to plot together for comparison
###################################################### ######################################################
# TODO: test deformable on S3DIS to see of fitting loss works
# TODO: GOOOO SemanticKitti for wednesday at least have a timing to give to them
# TODO: try class weights on S3DIS (very low weight for beam)
# Old result limit # Old result limit
old_res_lim = 'Log_2020-03-25_19-30-17' old_res_lim = 'Log_2020-03-25_19-30-17'
# My logs: choose the logs to show # My logs: choose the logs to show
logs, logs_names = S3DIS_(old_res_lim) logs, logs_names = SemanticKittiFirst(old_res_lim)
#os.environ['QT_DEBUG_PLUGINS'] = '1' #os.environ['QT_DEBUG_PLUGINS'] = '1'
###################################################### ######################################################
@ -1482,6 +1523,10 @@ if __name__ == '__main__':
if config.dataset.startswith('S3DIS'): if config.dataset.startswith('S3DIS'):
dataset = S3DISDataset(config, load_data=False) dataset = S3DISDataset(config, load_data=False)
compare_convergences_segment(dataset, logs, logs_names) compare_convergences_segment(dataset, logs, logs_names)
elif config.dataset_task == 'slam_segmentation':
if config.dataset.startswith('SemanticKitti'):
dataset = SemanticKittiDataset(config)
compare_convergences_SLAM(dataset, logs, logs_names)
else: else:
raise ValueError('Unsupported dataset : ' + plot_dataset) raise ValueError('Unsupported dataset : ' + plot_dataset)

227
test_models.py Normal file
View file

@ -0,0 +1,227 @@
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to start a training on ModelNet40 dataset
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 06/03/2020
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import signal
import os
import numpy as np
import sys
import torch
# Dataset
from datasets.ModelNet40 import *
from datasets.S3DIS import *
from datasets.SemanticKitti import *
from torch.utils.data import DataLoader
from utils.config import Config
from utils.tester import ModelTester
from models.architectures import KPCNN, KPFCNN
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
def model_choice(chosen_log):
###########################
# Call the test initializer
###########################
# Automatically retrieve the last trained model
if chosen_log in ['last_ModelNet40', 'last_ShapeNetPart', 'last_S3DIS']:
# Dataset name
test_dataset = '_'.join(chosen_log.split('_')[1:])
# List all training logs
logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
# Find the last log of asked dataset
for log in logs[::-1]:
log_config = Config()
log_config.load(log)
if log_config.dataset.startswith(test_dataset):
chosen_log = log
break
if chosen_log in ['last_ModelNet40', 'last_ShapeNetPart', 'last_S3DIS']:
raise ValueError('No log of the dataset "' + test_dataset + '" found')
# Check if log exists
if not os.path.exists(chosen_log):
raise ValueError('The given log does not exists: ' + chosen_log)
return chosen_log
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
###############################
# Choose the model to visualize
###############################
# Here you can choose which model you want to test with the variable test_model. Here are the possible values :
#
# > 'last_XXX': Automatically retrieve the last trained model on dataset XXX
# > '(old_)results/Log_YYYY-MM-DD_HH-MM-SS': Directly provide the path of a trained model
chosen_log = 'results/Log_2020-04-07_18-22-18' # => ModelNet40
# You can also choose the index of the snapshot to load (last by default)
chkp_idx = None
# Choose to test on validation or test split
on_val = True
# Deal with 'last_XXXXXX' choices
chosen_log = model_choice(chosen_log)
############################
# Initialize the environment
############################
# Set which gpu is going to be used
GPU_ID = '3'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
###############
# Previous chkp
###############
# Find all checkpoints in the chosen training folder
chkp_path = os.path.join(chosen_log, 'checkpoints')
chkps = [f for f in os.listdir(chkp_path) if f[:4] == 'chkp']
# Find which snapshot to restore
if chkp_idx is None:
chosen_chkp = 'current_chkp.tar'
else:
chosen_chkp = np.sort(chkps)[chkp_idx]
chosen_chkp = os.path.join(chosen_log, 'checkpoints', chosen_chkp)
# Initialize configuration class
config = Config()
config.load(chosen_log)
##################################
# Change model parameters for test
##################################
# Change parameters for the test here. For example, you can stop augmenting the input data.
#config.augment_noise = 0.0001
#config.augment_symmetries = False
#config.batch_num = 3
#config.in_radius = 4
config.validation_size = 200
config.input_threads = 0
##############
# Prepare Data
##############
print()
print('Data Preparation')
print('****************')
if on_val:
set = 'validation'
else:
set = 'test'
# Initiate dataset
if config.dataset.startswith('ModelNet40'):
test_dataset = ModelNet40Dataset(config, train=False)
test_sampler = ModelNet40Sampler(test_dataset)
collate_fn = ModelNet40Collate
elif config.dataset == 'S3DIS':
test_dataset = S3DISDataset(config, set='validation', use_potentials=True)
test_sampler = S3DISSampler(test_dataset)
collate_fn = S3DISCollate
elif config.dataset == 'SemanticKitti':
test_dataset = SemanticKittiDataset(config, set=set, balance_classes=False)
test_sampler = SemanticKittiSampler(test_dataset)
collate_fn = SemanticKittiCollate
else:
raise ValueError('Unsupported dataset : ' + config.dataset)
# Data loader
test_loader = DataLoader(test_dataset,
batch_size=1,
sampler=test_sampler,
collate_fn=collate_fn,
num_workers=config.input_threads,
pin_memory=True)
# Calibrate samplers
test_sampler.calibration(test_loader, verbose=True)
print('\nModel Preparation')
print('*****************')
# Define network model
t1 = time.time()
if config.dataset_task == 'classification':
net = KPCNN(config)
elif config.dataset_task in ['cloud_segmentation', 'slam_segmentation']:
net = KPFCNN(config, test_dataset.label_values, test_dataset.ignored_labels)
else:
raise ValueError('Unsupported dataset_task for testing: ' + config.dataset_task)
# Define a visualizer class
tester = ModelTester(net, chkp_path=chosen_chkp)
print('Done in {:.1f}s\n'.format(time.time() - t1))
print('\nStart test')
print('**********\n')
# Training
if config.dataset_task == 'classification':
a = 1/0
elif config.dataset_task == 'cloud_segmentation':
tester.cloud_segmentation_test(net, test_loader, config)
elif config.dataset_task == 'slam_segmentation':
tester.slam_segmentation_test(net, test_loader, config)
else:
raise ValueError('Unsupported dataset_task for testing: ' + config.dataset_task)
# TODO: For test and also for training. When changing epoch do not restart the worker initiation. Keep workers
# active with a while loop instead of using for loops.
# For training and validation, keep two sets of worker active in parallel? is it possible?
# TODO: We have to verify if training on smaller spheres and testing on whole frame changes the score because
# batchnorm may not have the same result as distribution of points will be different.

View file

@ -73,12 +73,23 @@ class S3DISConfig(Config):
'resnetb', 'resnetb',
'resnetb_strided', 'resnetb_strided',
'resnetb', 'resnetb',
'resnetb_strided', 'resnetb',
'resnetb', 'resnetb',
'resnetb_strided', 'resnetb_strided',
'resnetb', 'resnetb',
'resnetb',
'resnetb',
'resnetb',
'resnetb',
'resnetb_strided', 'resnetb_strided',
'resnetb', 'resnetb',
'resnetb',
'resnetb',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'nearest_upsample', 'nearest_upsample',
'unary', 'unary',
'nearest_upsample', 'nearest_upsample',
@ -93,13 +104,13 @@ class S3DISConfig(Config):
################### ###################
# Radius of the input sphere # Radius of the input sphere
in_radius = 2.0 in_radius = 2.5
# Number of kernel points # Number of kernel points
num_kernel_points = 15 num_kernel_points = 15
# Size of the first subsampling grid in meter # Size of the first subsampling grid in meter
first_subsampling_dl = 0.04 first_subsampling_dl = 0.03
# Radius of convolution in "number grid cell". (2.5 is the standard value) # Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5 conv_radius = 2.5
@ -108,7 +119,7 @@ class S3DISConfig(Config):
deform_radius = 6.0 deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value) # Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
KP_extent = 1.2 KP_extent = 1.5
# Behavior of convolutions in ('constant', 'linear', 'gaussian') # Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear' KP_influence = 'linear'
@ -117,7 +128,7 @@ class S3DISConfig(Config):
aggregation_mode = 'sum' aggregation_mode = 'sum'
# Choice of input features # Choice of input features
first_features_dim = 64 first_features_dim = 128
in_features_dim = 5 in_features_dim = 5
# Can the network learn modulations # Can the network learn modulations
@ -143,17 +154,17 @@ class S3DISConfig(Config):
# Learning rate management # Learning rate management
learning_rate = 1e-2 learning_rate = 1e-2
momentum = 0.98 momentum = 0.98
lr_decays = {i: 0.1**(1/100) for i in range(1, max_epoch)} lr_decays = {i: 0.1 ** (1 / 150) for i in range(1, max_epoch)}
grad_clip_norm = 100.0 grad_clip_norm = 100.0
# Number of batch # Number of batch
batch_num = 10 batch_num = 4
# Number of steps per epochs # Number of steps per epochs
epoch_steps = 500 epoch_steps = 500
# Number of validation examples per epoch # Number of validation examples per epoch
validation_size = 30 validation_size = 50
# Number of epoch between each checkpoint # Number of epoch between each checkpoint
checkpoint_gap = 50 checkpoint_gap = 50
@ -191,7 +202,7 @@ if __name__ == '__main__':
############################ ############################
# Set which gpu is going to be used # Set which gpu is going to be used
GPU_ID = '2' GPU_ID = '3'
# Set GPU visible device # Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
@ -201,7 +212,7 @@ if __name__ == '__main__':
############### ###############
# Choose here if you want to start training from a previous snapshot (None for new training) # Choose here if you want to start training from a previous snapshot (None for new training)
#previous_training_path = 'Log_2020-03-19_19-53-27' # previous_training_path = 'Log_2020-03-19_19-53-27'
previous_training_path = '' previous_training_path = ''
# Choose index of checkpoint to start from. If None, uses the latest chkp # Choose index of checkpoint to start from. If None, uses the latest chkp
@ -266,16 +277,16 @@ if __name__ == '__main__':
training_sampler.calibration(training_loader, verbose=True) training_sampler.calibration(training_loader, verbose=True)
test_sampler.calibration(test_loader, verbose=True) test_sampler.calibration(test_loader, verbose=True)
#debug_timing(training_dataset, training_loader) # debug_timing(training_dataset, training_loader)
#debug_timing(test_dataset, test_loader) # debug_timing(test_dataset, test_loader)
#debug_upsampling(training_dataset, training_loader) # debug_upsampling(training_dataset, training_loader)
print('\nModel Preparation') print('\nModel Preparation')
print('*****************') print('*****************')
# Define network model # Define network model
t1 = time.time() t1 = time.time()
net = KPFCNN(config) net = KPFCNN(config, training_dataset.label_values, training_dataset.ignored_labels)
debug = False debug = False
if debug: if debug:
@ -297,14 +308,7 @@ if __name__ == '__main__':
print('**************') print('**************')
# Training # Training
try: trainer.train(net, training_loader, test_loader, config)
trainer.train(net, training_loader, test_loader, config)
except:
print('Caught an error')
os.kill(os.getpid(), signal.SIGINT)
print('Forcing exit now') print('Forcing exit now')
os.kill(os.getpid(), signal.SIGINT) os.kill(os.getpid(), signal.SIGINT)

321
train_SemanticKitti.py Normal file
View file

@ -0,0 +1,321 @@
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to start a training on SemanticKitti dataset
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 06/03/2020
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import signal
import os
import numpy as np
import sys
import torch
# Dataset
from datasets.SemanticKitti import *
from torch.utils.data import DataLoader
from utils.config import Config
from utils.trainer import ModelTrainer
from models.architectures import KPFCNN
# ----------------------------------------------------------------------------------------------------------------------
#
# Config Class
# \******************/
#
class SemanticKittiConfig(Config):
"""
Override the parameters you want to modify for this dataset
"""
####################
# Dataset parameters
####################
# Dataset name
dataset = 'SemanticKitti'
# Number of classes in the dataset (This value is overwritten by dataset class when Initializating dataset).
num_classes = None
# Type of task performed on this dataset (also overwritten)
dataset_task = ''
# Number of CPU threads for the input pipeline
input_threads = 20
#########################
# Architecture definition
#########################
# Define layers
architecture = ['simple',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary']
###################
# KPConv parameters
###################
# Radius of the input sphere
in_radius = 10.0
val_radius = 51.0
n_frames = 1
max_in_points = 10000
max_val_points = 50000
# Number of batch
batch_num = 6
val_batch_num = 1
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.08
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out
deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
KP_extent = 1.5
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
# Aggregation function of KPConv in ('closest', 'sum')
aggregation_mode = 'sum'
# Choice of input features
first_features_dim = 128
in_features_dim = 5
# Can the network learn modulations
modulated = False
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.02
# Offset loss
# 'permissive' only constrains offsets inside the deform radius (NOT implemented yet)
# 'fitting' helps deformed kernels to adapt to the geometry by penalizing distance to input points
offsets_loss = 'fitting'
offsets_decay = 0.01
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 500
# Learning rate management
learning_rate = 1e-2
momentum = 0.98
lr_decays = {i: 0.1 ** (1 / 100) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of steps per epochs
epoch_steps = 500
# Number of validation examples per epoch
validation_size = 50
# Number of epoch between each checkpoint
checkpoint_gap = 50
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_color = 0.8
# Choose weights for class (used in segmentation loss). Empty list for no weights
class_w = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
# Do we nee to save convergence
saving = True
saving_path = None
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
############################
# Initialize the environment
############################
# Set which gpu is going to be used
GPU_ID = '2'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
###############
# Previous chkp
###############
# Choose here if you want to start training from a previous snapshot (None for new training)
# previous_training_path = 'Log_2020-03-19_19-53-27'
previous_training_path = ''
# Choose index of checkpoint to start from. If None, uses the latest chkp
chkp_idx = None
if previous_training_path:
# Find all snapshot in the chosen training folder
chkp_path = os.path.join('results', previous_training_path, 'checkpoints')
chkps = [f for f in os.listdir(chkp_path) if f[:4] == 'chkp']
# Find which snapshot to restore
if chkp_idx is None:
chosen_chkp = 'current_chkp.tar'
else:
chosen_chkp = np.sort(chkps)[chkp_idx]
chosen_chkp = os.path.join('results', previous_training_path, 'checkpoints', chosen_chkp)
else:
chosen_chkp = None
##############
# Prepare Data
##############
print()
print('Data Preparation')
print('****************')
# Initialize configuration class
config = SemanticKittiConfig()
if previous_training_path:
config.load(os.path.join('results', previous_training_path))
config.saving_path = None
# Get path from argument if given
if len(sys.argv) > 1:
config.saving_path = sys.argv[1]
# Initialize datasets
training_dataset = SemanticKittiDataset(config, set='training',
balance_classes=True)
test_dataset = SemanticKittiDataset(config, set='validation',
balance_classes=False)
# Initialize samplers
training_sampler = SemanticKittiSampler(training_dataset)
test_sampler = SemanticKittiSampler(test_dataset)
# Initialize the dataloader
training_loader = DataLoader(training_dataset,
batch_size=1,
sampler=training_sampler,
collate_fn=SemanticKittiCollate,
num_workers=config.input_threads,
pin_memory=True)
test_loader = DataLoader(test_dataset,
batch_size=1,
sampler=test_sampler,
collate_fn=SemanticKittiCollate,
num_workers=config.input_threads,
pin_memory=True)
# Calibrate max_in_point value
training_sampler.calib_max_in(config, training_loader, verbose=False)
test_sampler.calib_max_in(config, test_loader, verbose=False)
# Calibrate samplers
training_sampler.calibration(training_loader, verbose=True)
test_sampler.calibration(test_loader, verbose=True)
# debug_timing(training_dataset, training_loader)
# debug_timing(test_dataset, test_loader)
debug_class_w(training_dataset, training_loader)
print('\nModel Preparation')
print('*****************')
# Define network model
t1 = time.time()
net = KPFCNN(config, training_dataset.label_values, training_dataset.ignored_labels)
debug = False
if debug:
print('\n*************************************\n')
print(net)
print('\n*************************************\n')
for param in net.parameters():
if param.requires_grad:
print(param.shape)
print('\n*************************************\n')
print("Model size %i" % sum(param.numel() for param in net.parameters() if param.requires_grad))
print('\n*************************************\n')
# Define a trainer class
trainer = ModelTrainer(net, config, chkp_path=chosen_chkp)
print('Done in {:.1f}s\n'.format(time.time() - t1))
print('\nStart training')
print('**************')
# Training
trainer.train(net, training_loader, test_loader, config)
print('Forcing exit now')
os.kill(os.getpid(), signal.SIGINT)
# TODO: Create a function debug_class_weights that shows class distribution in input sphere. Use that as
# indication for the class weights during training

View file

@ -117,8 +117,10 @@ class Config:
# For SLAM datasets like SemanticKitti number of frames used (minimum one) # For SLAM datasets like SemanticKitti number of frames used (minimum one)
n_frames = 1 n_frames = 1
# For SLAM datasets like SemanticKitti max number of point in input cloud # For SLAM datasets like SemanticKitti max number of point in input cloud + validation
max_in_points = 0 max_in_points = 0
val_radius = 51.0
max_val_points = 50000
##################### #####################
# Training parameters # Training parameters
@ -151,18 +153,19 @@ class Config:
# Regularization loss importance # Regularization loss importance
weight_decay = 1e-3 weight_decay = 1e-3
# The way we balance segmentation loss # The way we balance segmentation loss DEPRECATED
# > 'none': Each point in the whole batch has the same contribution.
# > 'class': Each class has the same contribution (points are weighted according to class balance)
# > 'batch': Each cloud in the batch has the same contribution (points are weighted according cloud sizes)
segloss_balance = 'none' segloss_balance = 'none'
# Choose weights for class (used in segmentation loss). Empty list for no weights
class_w = []
# Offset regularization loss # Offset regularization loss
offsets_loss = 'permissive' offsets_loss = 'permissive'
offsets_decay = 1e-2 offsets_decay = 1e-2
# Number of batch # Number of batch
batch_num = 10 batch_num = 10
val_batch_num = 10
# Maximal number of epochs # Maximal number of epochs
max_epoch = 1000 max_epoch = 1000
@ -253,6 +256,9 @@ class Config:
else: else:
self.num_classes = int(line_info[2]) self.num_classes = int(line_info[2])
elif line_info[0] == 'class_w':
self.class_w = [float(w) for w in line_info[2:]]
else: else:
attr_type = type(getattr(self, line_info[0])) attr_type = type(getattr(self, line_info[0]))
if attr_type == bool: if attr_type == bool:
@ -320,6 +326,8 @@ class Config:
text_file.write('modulated = {:d}\n'.format(int(self.modulated))) text_file.write('modulated = {:d}\n'.format(int(self.modulated)))
text_file.write('n_frames = {:d}\n'.format(self.n_frames)) text_file.write('n_frames = {:d}\n'.format(self.n_frames))
text_file.write('max_in_points = {:d}\n\n'.format(self.max_in_points)) text_file.write('max_in_points = {:d}\n\n'.format(self.max_in_points))
text_file.write('max_val_points = {:d}\n\n'.format(self.max_val_points))
text_file.write('val_radius = {:.3f}\n\n'.format(self.val_radius))
# Training parameters # Training parameters
text_file.write('# Training parameters\n') text_file.write('# Training parameters\n')
@ -350,9 +358,14 @@ class Config:
text_file.write('weight_decay = {:f}\n'.format(self.weight_decay)) text_file.write('weight_decay = {:f}\n'.format(self.weight_decay))
text_file.write('segloss_balance = {:s}\n'.format(self.segloss_balance)) text_file.write('segloss_balance = {:s}\n'.format(self.segloss_balance))
text_file.write('class_w =')
for a in self.class_w:
text_file.write(' {:.3f}'.format(a))
text_file.write('\n')
text_file.write('offsets_loss = {:s}\n'.format(self.offsets_loss)) text_file.write('offsets_loss = {:s}\n'.format(self.offsets_loss))
text_file.write('offsets_decay = {:f}\n'.format(self.offsets_decay)) text_file.write('offsets_decay = {:f}\n'.format(self.offsets_decay))
text_file.write('batch_num = {:d}\n'.format(self.batch_num)) text_file.write('batch_num = {:d}\n'.format(self.batch_num))
text_file.write('val_batch_num = {:d}\n'.format(self.val_batch_num))
text_file.write('max_epoch = {:d}\n'.format(self.max_epoch)) text_file.write('max_epoch = {:d}\n'.format(self.max_epoch))
if self.epoch_steps is None: if self.epoch_steps is None:
text_file.write('epoch_steps = None\n') text_file.write('epoch_steps = None\n')

688
utils/tester.py Normal file
View file

@ -0,0 +1,688 @@
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Class handling the test of any model
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 11/06/2018
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Basic libs
import torch
import torch.nn as nn
import numpy as np
from os import makedirs, listdir
from os.path import exists, join
import time
import json
from sklearn.neighbors import KDTree
# PLY reader
from utils.ply import read_ply, write_ply
# Metrics
from utils.metrics import IoU_from_confusions, fast_confusion
from sklearn.metrics import confusion_matrix
#from utils.visualizer import show_ModelNet_models
# ----------------------------------------------------------------------------------------------------------------------
#
# Tester Class
# \******************/
#
class ModelTester:
# Initialization methods
# ------------------------------------------------------------------------------------------------------------------
def __init__(self, net, chkp_path=None, on_gpu=True):
############
# Parameters
############
# Choose to train on CPU or GPU
if on_gpu and torch.cuda.is_available():
self.device = torch.device("cuda:0")
else:
self.device = torch.device("cpu")
net.to(self.device)
##########################
# Load previous checkpoint
##########################
checkpoint = torch.load(chkp_path)
net.load_state_dict(checkpoint['model_state_dict'])
self.epoch = checkpoint['epoch']
net.eval()
print("Model and training state restored.")
return
# Test main methods
# ------------------------------------------------------------------------------------------------------------------
def cloud_segmentation_test(self, net, test_loader, config, num_votes=100, debug=False):
"""
Test method for cloud segmentation models
"""
############
# Initialize
############
# Choose test smoothing parameter (0 for no smothing, 0.99 for big smoothing)
test_smooth = 0.98
softmax = torch.nn.Softmax(1)
# Number of classes including ignored labels
nc_tot = test_loader.dataset.num_classes
# Number of classes predicted by the model
nc_model = config.num_classes
# Initiate global prediction over test clouds
self.test_probs = [np.zeros((l.shape[0], nc_model)) for l in test_loader.dataset.input_labels]
# Test saving path
if config.saving:
test_path = join('test', config.saving_path.split('/')[-1])
if not exists(test_path):
makedirs(test_path)
if not exists(join(test_path, 'predictions')):
makedirs(join(test_path, 'predictions'))
if not exists(join(test_path, 'probs')):
makedirs(join(test_path, 'probs'))
if not exists(join(test_path, 'potentials')):
makedirs(join(test_path, 'potentials'))
else:
test_path = None
# If on validation directly compute score
if test_loader.dataset.set == 'validation':
val_proportions = np.zeros(nc_model, dtype=np.float32)
i = 0
for label_value in test_loader.dataset.label_values:
if label_value not in test_loader.dataset.ignored_labels:
val_proportions[i] = np.sum([np.sum(labels == label_value)
for labels in test_loader.dataset.validation_labels])
i += 1
else:
val_proportions = None
#####################
# Network predictions
#####################
test_epoch = 0
last_min = -0.5
t = [time.time()]
last_display = time.time()
mean_dt = np.zeros(1)
# Start test loop
while True:
print('Initialize workers')
for i, batch in enumerate(test_loader):
# New time
t = t[-1:]
t += [time.time()]
if i == 0:
print('Done in {:.1f}s'.format(t[1] - t[0]))
if 'cuda' in self.device.type:
batch.to(self.device)
# Forward pass
outputs = net(batch, config)
t += [time.time()]
# Get probs and labels
stacked_probs = softmax(outputs).cpu().detach().numpy()
lengths = batch.lengths[0].cpu().numpy()
in_inds = batch.input_inds.cpu().numpy()
cloud_inds = batch.cloud_inds.cpu().numpy()
torch.cuda.synchronize(self.device)
# Get predictions and labels per instance
# ***************************************
i0 = 0
for b_i, length in enumerate(lengths):
# Get prediction
probs = stacked_probs[i0:i0 + length]
inds = in_inds[i0:i0 + length]
c_i = cloud_inds[b_i]
# Update current probs in whole cloud
self.test_probs[c_i][inds] = test_smooth * self.test_probs[c_i][inds] + (1 - test_smooth) * probs
i0 += length
# Average timing
t += [time.time()]
if i < 2:
mean_dt = np.array(t[1:]) - np.array(t[:-1])
else:
mean_dt = 0.9 * mean_dt + 0.1 * (np.array(t[1:]) - np.array(t[:-1]))
# Display
if (t[-1] - last_display) > 1.0:
last_display = t[-1]
message = 'e{:03d}-i{:04d} => {:.1f}% (timings : {:4.2f} {:4.2f} {:4.2f})'
print(message.format(test_epoch, i,
100 * i / config.validation_size,
1000 * (mean_dt[0]),
1000 * (mean_dt[1]),
1000 * (mean_dt[2])))
# Update minimum od potentials
new_min = torch.min(test_loader.dataset.min_potentials)
print('Test epoch {:d}, end. Min potential = {:.1f}'.format(test_epoch, new_min))
#print([np.mean(pots) for pots in test_loader.dataset.potentials])
# Save predicted cloud
if last_min + 1 < new_min:
# Update last_min
last_min += 1
# Show vote results (On subcloud so it is not the good values here)
if test_loader.dataset.set == 'validation':
print('\nConfusion on sub clouds')
Confs = []
for i, file_path in enumerate(test_loader.dataset.files):
# Insert false columns for ignored labels
probs = np.array(self.test_probs[i], copy=True)
for l_ind, label_value in enumerate(test_loader.dataset.label_values):
if label_value in test_loader.dataset.ignored_labels:
probs = np.insert(probs, l_ind, 0, axis=1)
# Predicted labels
preds = test_loader.dataset.label_values[np.argmax(probs, axis=1)].astype(np.int32)
# Targets
targets = test_loader.dataset.input_labels[i]
# Confs
Confs += [fast_confusion(targets, preds, test_loader.dataset.label_values)]
# Regroup confusions
C = np.sum(np.stack(Confs), axis=0).astype(np.float32)
# Remove ignored labels from confusions
for l_ind, label_value in reversed(list(enumerate(test_loader.dataset.label_values))):
if label_value in test_loader.dataset.ignored_labels:
C = np.delete(C, l_ind, axis=0)
C = np.delete(C, l_ind, axis=1)
# Rescale with the right number of point per class
C *= np.expand_dims(val_proportions / (np.sum(C, axis=1) + 1e-6), 1)
# Compute IoUs
IoUs = IoU_from_confusions(C)
mIoU = np.mean(IoUs)
s = '{:5.2f} | '.format(100 * mIoU)
for IoU in IoUs:
s += '{:5.2f} '.format(100 * IoU)
print(s + '\n')
# Save real IoU once in a while
if int(np.ceil(new_min)) % 10 == 0:
# Project predictions
print('\nReproject Vote #{:d}'.format(int(np.floor(new_min))))
t1 = time.time()
proj_probs = []
for i, file_path in enumerate(test_loader.dataset.files):
print(i, file_path, test_loader.dataset.test_proj[i].shape, self.test_probs[i].shape)
print(test_loader.dataset.test_proj[i].dtype, np.max(test_loader.dataset.test_proj[i]))
print(test_loader.dataset.test_proj[i][:5])
# Reproject probs on the evaluations points
probs = self.test_probs[i][test_loader.dataset.test_proj[i], :]
proj_probs += [probs]
t2 = time.time()
print('Done in {:.1f} s\n'.format(t2 - t1))
# Show vote results
if test_loader.dataset.set == 'validation':
print('Confusion on full clouds')
t1 = time.time()
Confs = []
for i, file_path in enumerate(test_loader.dataset.files):
# Insert false columns for ignored labels
for l_ind, label_value in enumerate(test_loader.dataset.label_values):
if label_value in test_loader.dataset.ignored_labels:
proj_probs[i] = np.insert(proj_probs[i], l_ind, 0, axis=1)
# Get the predicted labels
preds = test_loader.dataset.label_values[np.argmax(proj_probs[i], axis=1)].astype(np.int32)
# Confusion
targets = test_loader.dataset.validation_labels[i]
Confs += [fast_confusion(targets, preds, test_loader.dataset.label_values)]
t2 = time.time()
print('Done in {:.1f} s\n'.format(t2 - t1))
# Regroup confusions
C = np.sum(np.stack(Confs), axis=0)
# Remove ignored labels from confusions
for l_ind, label_value in reversed(list(enumerate(test_loader.dataset.label_values))):
if label_value in test_loader.dataset.ignored_labels:
C = np.delete(C, l_ind, axis=0)
C = np.delete(C, l_ind, axis=1)
IoUs = IoU_from_confusions(C)
mIoU = np.mean(IoUs)
s = '{:5.2f} | '.format(100 * mIoU)
for IoU in IoUs:
s += '{:5.2f} '.format(100 * IoU)
print('-' * len(s))
print(s)
print('-' * len(s) + '\n')
# Save predictions
print('Saving clouds')
t1 = time.time()
for i, file_path in enumerate(test_loader.dataset.files):
# Get file
points = test_loader.dataset.load_evaluation_points(file_path)
# Get the predicted labels
preds = test_loader.dataset.label_values[np.argmax(proj_probs[i], axis=1)].astype(np.int32)
# Save plys
cloud_name = file_path.split('/')[-1]
test_name = join(test_path, 'predictions', cloud_name)
write_ply(test_name,
[points, preds],
['x', 'y', 'z', 'preds'])
test_name2 = join(test_path, 'probs', cloud_name)
prob_names = ['_'.join(test_loader.dataset.label_to_names[label].split())
for label in test_loader.dataset.label_values]
write_ply(test_name2,
[points, proj_probs[i]],
['x', 'y', 'z'] + prob_names)
# Save potentials
pot_points = np.array(test_loader.dataset.pot_trees[i].data, copy=False)
pot_name = join(test_path, 'potentials', cloud_name)
pots = test_loader.dataset.potentials[i].numpy().astype(np.float32)
write_ply(pot_name,
[pot_points.astype(np.float32), pots],
['x', 'y', 'z', 'pots'])
# Save ascii preds
if test_loader.dataset.set == 'test':
if test_loader.dataset.name.startswith('Semantic3D'):
ascii_name = join(test_path, 'predictions', test_loader.dataset.ascii_files[cloud_name])
else:
ascii_name = join(test_path, 'predictions', cloud_name[:-4] + '.txt')
np.savetxt(ascii_name, preds, fmt='%d')
t2 = time.time()
print('Done in {:.1f} s\n'.format(t2 - t1))
test_epoch += 1
# Break when reaching number of desired votes
if last_min > num_votes:
break
return
def slam_segmentation_test(self, net, test_loader, config, num_votes=100, debug=False):
"""
Test method for slam segmentation models
"""
############
# Initialize
############
# Choose validation smoothing parameter (0 for no smothing, 0.99 for big smoothing)
test_smooth = 0
last_min = -0.5
softmax = torch.nn.Softmax(1)
# Number of classes including ignored labels
nc_tot = test_loader.dataset.num_classes
nc_model = net.C
# Test saving path
test_path = None
report_path = None
if config.saving:
test_path = join('test', config.saving_path.split('/')[-1])
if not exists(test_path):
makedirs(test_path)
report_path = join(test_path, 'reports')
if not exists(report_path):
makedirs(report_path)
if test_loader.dataset.set == 'validation':
for folder in ['val_predictions', 'val_probs']:
if not exists(join(test_path, folder)):
makedirs(join(test_path, folder))
else:
for folder in ['predictions', 'probs']:
if not exists(join(test_path, folder)):
makedirs(join(test_path, folder))
# Init validation container
all_f_preds = []
all_f_labels = []
if test_loader.dataset.set == 'validation':
for i, seq_frames in enumerate(test_loader.dataset.frames):
all_f_preds.append([np.zeros((0,), dtype=np.int32) for _ in seq_frames])
all_f_labels.append([np.zeros((0,), dtype=np.int32) for _ in seq_frames])
#####################
# Network predictions
#####################
predictions = []
targets = []
test_epoch = 0
t = [time.time()]
last_display = time.time()
mean_dt = np.zeros(1)
# Start test loop
while True:
print('Initialize workers')
for i, batch in enumerate(test_loader):
# New time
t = t[-1:]
t += [time.time()]
if i == 0:
print('Done in {:.1f}s'.format(t[1] - t[0]))
if 'cuda' in self.device.type:
batch.to(self.device)
# Forward pass
outputs = net(batch, config)
# Get probs and labels
stk_probs = softmax(outputs).cpu().detach().numpy()
lengths = batch.lengths[0].cpu().numpy()
f_inds = batch.frame_inds.cpu().numpy()
r_inds_list = batch.reproj_inds
r_mask_list = batch.reproj_masks
labels_list = batch.val_labels
torch.cuda.synchronize(self.device)
t += [time.time()]
# Get predictions and labels per instance
# ***************************************
i0 = 0
for b_i, length in enumerate(lengths):
# Get prediction
probs = stk_probs[i0:i0 + length]
proj_inds = r_inds_list[b_i]
proj_mask = r_mask_list[b_i]
frame_labels = labels_list[b_i]
s_ind = f_inds[b_i, 0]
f_ind = f_inds[b_i, 1]
# Project predictions on the frame points
proj_probs = probs[proj_inds]
# Safe check if only one point:
if proj_probs.ndim < 2:
proj_probs = np.expand_dims(proj_probs, 0)
# Save probs in a binary file (uint8 format for lighter weight)
seq_name = test_loader.dataset.sequences[s_ind]
if test_loader.dataset.set == 'validation':
folder = 'val_probs'
pred_folder = 'val_predictions'
else:
folder = 'probs'
pred_folder = 'predictions'
filename = '{:s}_{:07d}.npy'.format(seq_name, f_ind)
filepath = join(test_path, folder, filename)
if exists(filepath):
frame_probs_uint8 = np.load(filepath)
else:
frame_probs_uint8 = np.zeros((proj_mask.shape[0], nc_model), dtype=np.uint8)
frame_probs = frame_probs_uint8[proj_mask, :].astype(np.float32) / 255
frame_probs = test_smooth * frame_probs + (1 - test_smooth) * proj_probs
frame_probs_uint8[proj_mask, :] = (frame_probs * 255).astype(np.uint8)
np.save(filepath, frame_probs_uint8)
# Save some prediction in ply format for visual
if test_loader.dataset.set == 'validation':
# Insert false columns for ignored labels
for l_ind, label_value in enumerate(test_loader.dataset.label_values):
if label_value in test_loader.dataset.ignored_labels:
frame_probs_uint8 = np.insert(frame_probs_uint8, l_ind, 0, axis=1)
# Predicted labels
frame_preds = test_loader.dataset.label_values[np.argmax(frame_probs_uint8,
axis=1)].astype(np.int32)
# Save some of the frame pots
if f_ind % 20 == 0:
seq_path = join(test_loader.dataset.path, 'sequences', test_loader.dataset.sequences[s_ind])
velo_file = join(seq_path, 'velodyne', test_loader.dataset.frames[s_ind][f_ind] + '.bin')
frame_points = np.fromfile(velo_file, dtype=np.float32)
frame_points = frame_points.reshape((-1, 4))
predpath = join(test_path, pred_folder, filename[:-4] + '.ply')
#pots = test_loader.dataset.f_potentials[s_ind][f_ind]
pots = np.zeros((0,))
if pots.shape[0] > 0:
write_ply(predpath,
[frame_points[:, :3], frame_labels, frame_preds, pots],
['x', 'y', 'z', 'gt', 'pre', 'pots'])
else:
write_ply(predpath,
[frame_points[:, :3], frame_labels, frame_preds],
['x', 'y', 'z', 'gt', 'pre'])
# keep frame preds in memory
all_f_preds[s_ind][f_ind] = frame_preds
all_f_labels[s_ind][f_ind] = frame_labels
else:
# Save some of the frame preds
if f_inds[b_i, 1] % 100 == 0:
# Insert false columns for ignored labels
for l_ind, label_value in enumerate(test_loader.dataset.label_values):
if label_value in test_loader.dataset.ignored_labels:
frame_probs_uint8 = np.insert(frame_probs_uint8, l_ind, 0, axis=1)
# Predicted labels
frame_preds = test_loader.dataset.label_values[np.argmax(frame_probs_uint8,
axis=1)].astype(np.int32)
# Load points
seq_path = join(test_loader.dataset.path, 'sequences', test_loader.dataset.sequences[s_ind])
velo_file = join(seq_path, 'velodyne', test_loader.dataset.frames[s_ind][f_ind] + '.bin')
frame_points = np.fromfile(velo_file, dtype=np.float32)
frame_points = frame_points.reshape((-1, 4))
predpath = join(test_path, pred_folder, filename[:-4] + '.ply')
#pots = test_loader.dataset.f_potentials[s_ind][f_ind]
pots = np.zeros((0,))
if pots.shape[0] > 0:
write_ply(predpath,
[frame_points[:, :3], frame_preds, pots],
['x', 'y', 'z', 'pre', 'pots'])
else:
write_ply(predpath,
[frame_points[:, :3], frame_preds],
['x', 'y', 'z', 'pre'])
# Stack all prediction for this epoch
i0 += length
# Average timing
t += [time.time()]
mean_dt = 0.95 * mean_dt + 0.05 * (np.array(t[1:]) - np.array(t[:-1]))
# Display
if (t[-1] - last_display) > 1.0:
last_display = t[-1]
message = 'e{:03d}-i{:04d} => {:.1f}% (timings : {:4.2f} {:4.2f} {:4.2f}) / pots {:d} => {:.1f}%'
min_pot = int(torch.floor(torch.min(test_loader.dataset.potentials)))
pot_num = torch.sum(test_loader.dataset.potentials > min_pot).type(torch.int32).item()
current_num = pot_num + (i0 + 1 - config.validation_size) * config.val_batch_num
print(message.format(test_epoch, i,
100 * i / config.validation_size,
1000 * (mean_dt[0]),
1000 * (mean_dt[1]),
1000 * (mean_dt[2]),
min_pot,
100.0 * current_num / len(test_loader.dataset.potentials)))
# Update minimum od potentials
new_min = torch.min(test_loader.dataset.potentials)
print('Test epoch {:d}, end. Min potential = {:.1f}'.format(test_epoch, new_min))
if last_min + 1 < new_min:
# Update last_min
last_min += 1
if test_loader.dataset.set == 'validation' and last_min % 1 == 0:
#####################################
# Results on the whole validation set
#####################################
# Confusions for our subparts of validation set
Confs = np.zeros((len(predictions), nc_tot, nc_tot), dtype=np.int32)
for i, (preds, truth) in enumerate(zip(predictions, targets)):
# Confusions
Confs[i, :, :] = fast_confusion(truth, preds, test_loader.dataset.label_values).astype(np.int32)
# Show vote results
print('\nCompute confusion')
val_preds = []
val_labels = []
t1 = time.time()
for i, seq_frames in enumerate(test_loader.dataset.frames):
val_preds += [np.hstack(all_f_preds[i])]
val_labels += [np.hstack(all_f_labels[i])]
val_preds = np.hstack(val_preds)
val_labels = np.hstack(val_labels)
t2 = time.time()
C_tot = fast_confusion(val_labels, val_preds, test_loader.dataset.label_values)
t3 = time.time()
print(' Stacking time : {:.1f}s'.format(t2 - t1))
print('Confusion time : {:.1f}s'.format(t3 - t2))
s1 = '\n'
for cc in C_tot:
for c in cc:
s1 += '{:7.0f} '.format(c)
s1 += '\n'
if debug:
print(s1)
# Remove ignored labels from confusions
for l_ind, label_value in reversed(list(enumerate(test_loader.dataset.label_values))):
if label_value in test_loader.dataset.ignored_labels:
C_tot = np.delete(C_tot, l_ind, axis=0)
C_tot = np.delete(C_tot, l_ind, axis=1)
# Objects IoU
val_IoUs = IoU_from_confusions(C_tot)
# Compute IoUs
mIoU = np.mean(val_IoUs)
s2 = '{:5.2f} | '.format(100 * mIoU)
for IoU in val_IoUs:
s2 += '{:5.2f} '.format(100 * IoU)
print(s2 + '\n')
# Save a report
report_file = join(report_path, 'report_{:04d}.txt'.format(int(np.floor(last_min))))
str = 'Report of the confusion and metrics\n'
str += '***********************************\n\n\n'
str += 'Confusion matrix:\n\n'
str += s1
str += '\nIoU values:\n\n'
str += s2
str += '\n\n'
with open(report_file, 'w') as f:
f.write(str)
test_epoch += 1
# Break when reaching number of desired votes
if last_min > num_votes:
break
return

File diff suppressed because it is too large Load diff