Corrections
This commit is contained in:
parent
c32e6ce94e
commit
3f7996cbab
|
@ -1,5 +1,5 @@
|
|||
|
||||
## Scene Segmentation on S3DIS
|
||||
## Scene Segmentation on SemanticKitti
|
||||
|
||||
### Data
|
||||
|
||||
|
@ -12,22 +12,24 @@ Download the three file named:
|
|||
* [`data_odometry_calib.zip` (1 MB)](http://www.cvlibs.net/download.php?file=data_odometry_calib.zip)
|
||||
* [`data_odometry_labels.zip` (179 MB)](http://semantic-kitti.org/assets/data_odometry_labels.zip)
|
||||
|
||||
|
||||
uncompress the data and move it to `../../Data/SemanticKitti`.
|
||||
|
||||
http://www.cvlibs.net/download.php?file=data_odometry_velodyne.zip
|
||||
|
||||
You also need to download the files
|
||||
[`semantic-kitti-all.yaml`](https://github.com/PRBonn/semantic-kitti-api/blob/master/config/semantic-kitti-all.yaml)
|
||||
and
|
||||
[`semantic-kitti.yaml`](https://github.com/PRBonn/semantic-kitti-api/blob/master/config/semantic-kitti.yaml).
|
||||
Place them in your `../../Data/SemanticKitti` folder.
|
||||
|
||||
N.B. If you want to place your data anywhere else, you just have to change the variable
|
||||
`self.path` of `S3DISDataset` class ([here](https://github.com/HuguesTHOMAS/KPConv-PyTorch/blob/afa18c92f00c6ed771b61cb08b285d2f93446ea4/datasets/S3DIS.py#L88)).
|
||||
`self.path` of `SemanticKittiDataset` class ([here](https://github.com/HuguesTHOMAS/KPConv-PyTorch/blob/c32e6ce94ed34a3dd9584f98d8dc0be02535dfb4/datasets/SemanticKitti.py#L65)).
|
||||
|
||||
### Training
|
||||
|
||||
Simply run the following script to start the training:
|
||||
|
||||
python3 training_S3DIS.py
|
||||
python3 training_SemanticKitti.py
|
||||
|
||||
Similarly to ModelNet40 training, the parameters can be modified in a configuration subclass called `S3DISConfig`, and the first run of this script might take some time to precompute dataset structures.
|
||||
Similarly to ModelNet40 training, the parameters can be modified in a configuration subclass called `SemanticKittiConfig`, and the first run of this script might take some time to precompute dataset structures.
|
||||
|
||||
|
||||
### Plot a logged training
|
||||
|
|
Loading…
Reference in a new issue