105 lines
2.6 KiB
Markdown
Executable file
105 lines
2.6 KiB
Markdown
Executable file
* adapted from https://github.com/ThibaultGROUEIX/ChamferDistancePytorch
|
|
|
|
----------------------------------
|
|
# Pytorch Chamfer Distance.
|
|
|
|
Include a **CUDA** version, and a **PYTHON** version with pytorch standard operations.
|
|
NB : In this depo, dist1 and dist2 are squared pointcloud euclidean distances, so you should adapt thresholds accordingly.
|
|
|
|
- [x] F - Score
|
|
|
|
|
|
|
|
### CUDA VERSION
|
|
|
|
- [x] JIT compilation
|
|
- [x] Supports multi-gpu
|
|
- [x] 2D point clouds.
|
|
- [x] 3D point clouds.
|
|
- [x] 5D point clouds.
|
|
- [x] Contiguous() safe.
|
|
|
|
|
|
|
|
### Python Version
|
|
|
|
- [x] Supports any dimension
|
|
|
|
|
|
|
|
### Usage
|
|
|
|
```python
|
|
import torch, chamfer3D.dist_chamfer_3D, fscore
|
|
chamLoss = chamfer3D.dist_chamfer_3D.chamfer_3DDist()
|
|
points1 = torch.rand(32, 1000, 3).cuda()
|
|
points2 = torch.rand(32, 2000, 3, requires_grad=True).cuda()
|
|
dist1, dist2, idx1, idx2 = chamLoss(points1, points2)
|
|
f_score, precision, recall = fscore.fscore(dist1, dist2)
|
|
```
|
|
|
|
|
|
|
|
### Add it to your project as a submodule
|
|
|
|
```shell
|
|
git submodule add https://github.com/ThibaultGROUEIX/ChamferDistancePytorch
|
|
```
|
|
|
|
|
|
|
|
### Benchmark: [forward + backward] pass
|
|
- [x] CUDA 10.1, NVIDIA 435, Pytorch 1.4
|
|
- [x] p1 : 32 x 2000 x dim
|
|
- [x] p2 : 32 x 1000 x dim
|
|
|
|
| *Timing (sec * 1000)* | 2D | 3D | 5D |
|
|
| ---------- | -------- | ------- | ------- |
|
|
| **Cuda Compiled** | **1.2** | 1.4 |1.8 |
|
|
| **Cuda JIT** | 1.3 | **1.4** |**1.5** |
|
|
| **Python** | 37 | 37 | 37 |
|
|
|
|
|
|
| *Memory (MB)* | 2D | 3D | 5D |
|
|
| ---------- | -------- | ------- | ------- |
|
|
| **Cuda Compiled** | 529 | 529 | 549 |
|
|
| **Cuda JIT** | **520** | **529** |**549** |
|
|
| **Python** | 2495 | 2495 | 2495 |
|
|
|
|
|
|
|
|
### What is the chamfer distance ?
|
|
|
|
[Stanford course](http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L14%20-%203d%20deep%20learning%20on%20point%20cloud%20representation%20(analysis).pdf) on 3D deep Learning
|
|
|
|
|
|
|
|
### Aknowledgment
|
|
|
|
Original backbone from [Fei Xia](https://github.com/fxia22/pointGAN/blob/master/nndistance/src/nnd_cuda.cu).
|
|
|
|
JIT cool trick from [Christian Diller](https://github.com/chrdiller)
|
|
|
|
### Troubleshoot
|
|
|
|
- `Undefined symbol: Zxxxxxxxxxxxxxxxxx `:
|
|
|
|
--> Fix: Make sure to `import torch` before you `import chamfer`.
|
|
--> Use pytorch.version >= 1.1.0
|
|
|
|
- [RuntimeError: Ninja is required to load C++ extension](https://github.com/zhanghang1989/PyTorch-Encoding/issues/167)
|
|
|
|
```shell
|
|
wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip
|
|
sudo unzip ninja-linux.zip -d /usr/local/bin/
|
|
sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
#### TODO:
|
|
|
|
* Discuss behaviour of torch.min() and tensor.min() which causes issues in some pytorch versions
|