LION/README.md
2023-03-13 16:41:11 -04:00

88 lines
3.7 KiB
Markdown

## <p align="center">LION: Latent Point Diffusion Models for 3D Shape Generation<br><br> NeurIPS 2022 </p>
<div align="center">
<a href="https://www.cs.utoronto.ca/~xiaohui/" target="_blank">Xiaohui&nbsp;Zeng</a> &emsp;
<a href="http://latentspace.cc/" target="_blank">Arash&nbsp;Vahdat</a> &emsp;
<a href="https://www.fwilliams.info/" target="_blank">Francis&nbsp;Williams</a> &emsp;
<a href="https://zgojcic.github.io/" target="_blank">Zan&nbsp;Gojcic</a> &emsp;
<a href="https://orlitany.github.io/" target="_blank">Or&nbsp;Litany</a> &emsp;
<a href="https://www.cs.utoronto.ca/~fidler/" target="_blank">Sanja&nbsp;Fidler</a> &emsp;
<a href="https://karstenkreis.github.io/" target="_blank">Karsten&nbsp;Kreis</a>
<br> <br>
<a href="https://arxiv.org/abs/2210.06978" target="_blank">Paper</a> &emsp;
<a href="https://nv-tlabs.github.io/LION" target="_blank">Project&nbsp;Page</a>
</div>
<p align="center">
<img width="750" alt="Animation" src="assets/animation.gif"/>
</p>
## Update
* add pointclouds rendering code used for paper figure, see `utils/render_mitsuba_pc.py`
* When opening an issue, please add @ZENGXH so that I can reponse faster!
## Install
* Dependencies:
* CUDA 11.6
* Setup the environment
Install from conda file
```
conda env create --name lion_env --file=env.yaml
conda activate lion_env
# Install some other packages
pip install git+https://github.com/openai/CLIP.git
# build some packages first (optional)
python build_pkg.py
```
Tested with conda version 22.9.0
* Using Docker
* build the docker with `bash ./docker/build_docker.sh`
* launch the docker with `bash ./docker/run.sh`
## Demo
run `python demo.py`, will load the released text2shape model on hugging face and generate a chair point cloud. (Note: the checkpoint is not released yet, the files loaded in the `demo.py` file is not available at this point)
## Released checkpoint and samples
* will be release soon
* put the downloaded file under `./lion_ckpt/`
## Training
### data
* ShapeNet can be downloaded [here](https://github.com/stevenygd/PointFlow#dataset).
* Put the downloaded data as `./data/ShapeNetCore.v2.PC15k` *or* edit the `pointflow` entry in `./datasets/data_path.py` for the ShapeNet dataset path.
### train VAE
* run `bash ./script/train_vae.sh $NGPU` (the released checkpoint is trained with `NGPU=4` on A100)
* if want to use comet to log the experiment, add `.comet_api` file under the current folder, write the api key as `{"api_key": "${COMET_API_KEY}"}` in the `.comet_api` file
### train diffusion prior
* require the vae checkpoint
* run `bash ./script/train_prior.sh $NGPU` (the released checkpoint is trained with `NGPU=8` with 2 node on V100)
### evaluate a trained prior
* download the test data from [here](https://drive.google.com/file/d/1uEp0o6UpRqfYwvRXQGZ5ZgT1IYBQvUSV/view?usp=share_link), unzip and put it as `./datasets/test_data/`
* download the released checkpoint from above
```
checkpoint="./lion_ckpt/unconditional/airplane/checkpoints/model.pt"
bash ./script/eval.sh $checkpoint # will take 1-2 hour
```
## Evaluate the samples with the 1-NNA metrics
* download the test data from [here](https://drive.google.com/file/d/1uEp0o6UpRqfYwvRXQGZ5ZgT1IYBQvUSV/view?usp=share_link), unzip and put it as `./datasets/test_data/`
* run `python ./script/compute_score.py`
## Citation
```
@inproceedings{zeng2022lion,
title={LION: Latent Point Diffusion Models for 3D Shape Generation},
author={Xiaohui Zeng and Arash Vahdat and Francis Williams and Zan Gojcic and Or Litany and Sanja Fidler and Karsten Kreis},
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
year={2022}
}
```