PVD/README.md
Linqi (Alex) Zhou 7fce539f7c ...
2021-11-01 00:21:12 -07:00

108 lines
2.8 KiB
Markdown

# Shape Generation and Completion Through Point-Voxel Diffusion
<p float="left">
<img src="assets/pvd_teaser.gif" width="80%"/>
</p>
[Project](https://alexzhou907.github.io/pvd) | [Paper](https://arxiv.org/abs/2104.03670)
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion
[Linqi Zhou](https://alexzhou907.github.io), [Yilun Du](https://yilundu.github.io/), [Jiajun Wu](https://jiajunwu.com/)
## Requirements:
Make sure the following environments are installed.
```
python==3.6
pytorch==1.4.0
torchvision==0.5.0
cudatoolkit==10.1
matplotlib==2.2.5
tqdm==4.32.1
open3d==0.9.0
trimesh=3.7.12
scipy==1.5.1
```
Install PyTorchEMD by
```
cd metrics/PyTorchEMD
python setup.py install
cp build/**/emd_cuda.cpython-36m-x86_64-linux-gnu.so .
```
The code was tested on Unbuntu with Titan RTX.
## Data
For generation, we use ShapeNet point cloud, which can be downloaded [here](https://github.com/stevenygd/PointFlow).
For completion, we use ShapeNet rendering provided by [GenRe](https://github.com/xiumingzhang/GenRe-ShapeHD).
We provide script `convert_cam_params.py` to process the provided data.
For training the model on shape completion, we need camera parameters for each view
which are not directly available. To obtain these, simply run
```bash
$ python convert_cam_params.py --dataroot DATA_DIR --mitsuba_xml_root XML_DIR
```
which will create `..._cam_params.npz` in each provided data folder for each view.
## Pretrained models
Pretrained models can be downloaded [here](https://drive.google.com/drive/folders/1Q7aSaTr6lqmo8qx80nIm1j28mOHAHGiM?usp=sharing).
## Training:
```bash
$ python train_generation.py --category car|chair|airplane
```
Please refer to the python file for optimal training parameters.
## Testing:
```bash
$ python train_generation.py --category car|chair|airplane --model MODEL_PATH
```
## Results
Some generation and completion results are as follows.
<p float="left">
<img src="assets/gen_comp.gif" width="60%"/>
</p>
Multimodal completion on ShapeNet chair.
<p float="left">
<img src="assets/mm_shapenet.gif" width="80%"/>
</p>
Multimodal completion on PartNet.
<p float="left">
<img src="assets/mm_partnet.gif" width="80%"/>
</p>
Multimodal completion on RedWood 3DScan Chairs.
<p float="left">
<img src="assets/mm_redwood.gif" width="80%"/>
</p>
## Reference
```
@inproceedings{Zhou_2021_ICCV,
author = {Zhou, Linqi and Du, Yilun and Wu, Jiajun},
title = {3D Shape Generation and Completion Through Point-Voxel Diffusion},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {5826-5835}
}
```
## Acknowledgement
For any questions related to codes and experiment setting, please contact [Linqi Zhou](linqizhou@stanford.edu) and [Yilun Du](yilundu@mit.edu).