PointMLP/part_segmentation/util/data_util.py

165 lines
6.4 KiB
Python
Raw Normal View History

import glob
import h5py
import numpy as np
from torch.utils.data import Dataset
import os
import json
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
def load_data(partition):
all_data = []
all_label = []
for h5_name in glob.glob('./data/modelnet40_ply_hdf5_2048/ply_data_%s*.h5' % partition):
f = h5py.File(h5_name)
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label
def pc_normalize(pc):
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
pc = pc / m
return pc
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip)
return pointcloud
# =========== ModelNet40 =================
class ModelNet40(Dataset):
def __init__(self, num_points, partition='train'):
self.data, self.label = load_data(partition)
self.num_points = num_points
self.partition = partition # Here the new given partition will cover the 'train'
def __getitem__(self, item): # indice of the pts or label
pointcloud = self.data[item][:self.num_points]
label = self.label[item]
if self.partition == 'train':
# pointcloud = pc_normalize(pointcloud) # you can try to add it or not to train our model
pointcloud = translate_pointcloud(pointcloud)
np.random.shuffle(pointcloud) # shuffle the order of pts
return pointcloud, label
def __len__(self):
return self.data.shape[0]
# =========== ShapeNet Part =================
class PartNormalDataset(Dataset):
def __init__(self, npoints=2500, split='train', normalize=False):
self.npoints = npoints
self.root = './data/shapenetcore_partanno_segmentation_benchmark_v0_normal'
self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')
self.cat = {}
self.normalize = normalize
with open(self.catfile, 'r') as f:
for line in f:
ls = line.strip().split()
self.cat[ls[0]] = ls[1]
self.cat = {k: v for k, v in self.cat.items()}
self.meta = {}
with open(os.path.join(self.root, 'train_test_split', 'shuffled_train_file_list.json'), 'r') as f:
train_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_val_file_list.json'), 'r') as f:
val_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_test_file_list.json'), 'r') as f:
test_ids = set([str(d.split('/')[2]) for d in json.load(f)])
for item in self.cat:
self.meta[item] = []
dir_point = os.path.join(self.root, self.cat[item])
fns = sorted(os.listdir(dir_point))
if split == 'trainval':
fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]
elif split == 'train':
fns = [fn for fn in fns if fn[0:-4] in train_ids]
elif split == 'val':
fns = [fn for fn in fns if fn[0:-4] in val_ids]
elif split == 'test':
fns = [fn for fn in fns if fn[0:-4] in test_ids]
else:
print('Unknown split: %s. Exiting..' % (split))
exit(-1)
for fn in fns:
token = (os.path.splitext(os.path.basename(fn))[0])
self.meta[item].append(os.path.join(dir_point, token + '.txt'))
self.datapath = []
for item in self.cat:
for fn in self.meta[item]:
self.datapath.append((item, fn))
self.classes = dict(zip(self.cat, range(len(self.cat))))
# Mapping from category ('Chair') to a list of int [10,11,12,13] as segmentation labels
self.seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46],
'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27],
'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40],
'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}
self.cache = {} # from index to (point_set, cls, seg) tuple
self.cache_size = 20000
def __getitem__(self, index):
if index in self.cache:
point_set, normal, seg, cls = self.cache[index]
else:
fn = self.datapath[index]
cat = self.datapath[index][0]
cls = self.classes[cat]
cls = np.array([cls]).astype(np.int32)
data = np.loadtxt(fn[1]).astype(np.float32)
point_set = data[:, 0:3]
normal = data[:, 3:6]
seg = data[:, -1].astype(np.int32)
if len(self.cache) < self.cache_size:
self.cache[index] = (point_set, normal, seg, cls)
if self.normalize:
point_set = pc_normalize(point_set)
choice = np.random.choice(len(seg), self.npoints, replace=True)
# resample
# note that the number of points in some points clouds is less than 2048, thus use random.choice
# remember to use the same seed during train and test for a getting stable result
point_set = point_set[choice, :]
seg = seg[choice]
normal = normal[choice, :]
return point_set, cls, seg, normal
def __len__(self):
return len(self.datapath)
if __name__ == '__main__':
train = PartNormalDataset(npoints=2048, split='trainval', normalize=False)
test = PartNormalDataset(npoints=2048, split='test', normalize=False)
for data, label, _, _ in train:
print(data.shape)
print(label.shape)