149 lines
4.8 KiB
Markdown
149 lines
4.8 KiB
Markdown
# Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework (ICLR 2022)
|
||
|
||
|
||
|
||
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rethinking-network-design-and-local-geometry/3d-point-cloud-classification-on-modelnet40)](https://paperswithcode.com/sota/3d-point-cloud-classification-on-modelnet40?p=rethinking-network-design-and-local-geometry)
|
||
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rethinking-network-design-and-local-geometry/3d-point-cloud-classification-on-scanobjectnn)](https://paperswithcode.com/sota/3d-point-cloud-classification-on-scanobjectnn?p=rethinking-network-design-and-local-geometry)
|
||
|
||
|
||
<div align="left">
|
||
<a><img src="images/smile.png" height="70px" ></a>
|
||
<a><img src="images/neu.png" height="70px" ></a>
|
||
<a><img src="images/columbia.png" height="70px" ></a>
|
||
</div>
|
||
|
||
[Project Sites]() | [arXiv]() | Primary contact: [Xu Ma](mailto:ma.xu1@northeastern.edu)
|
||
|
||
<div align="center">
|
||
<img src="images/overview.png" width="650px" height="300px">
|
||
</div>
|
||
|
||
Overview of one stage in PointMLP. Given an input point cloud, PointMLP progressively extract local features using residual point MLP blocks. In each stage, we first transform local point using a geometric affine module, then local points are are extracted before and after aggregation respectively. By repeating multiple stages, PointMLP progressively enlarge the receptive field and model entire point cloud geometric information.
|
||
|
||
|
||
## BibTeX
|
||
|
||
@inproceedings{
|
||
ma2022rethinking,
|
||
title={Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual {MLP} Framework},
|
||
author={Xu Ma and Can Qin and Haoxuan You and Haoxi Ran and Yun Fu},
|
||
booktitle={International Conference on Learning Representations},
|
||
year={2022},
|
||
url={https://openreview.net/forum?id=3Pbra-_u76D}
|
||
}
|
||
|
||
|
||
|
||
## News & Updates:
|
||
- [ ] updated pretrained models
|
||
- [ ] project page
|
||
- [ ] update std bug (unstable testing in previous version)
|
||
- [ ] paper/codes release
|
||
|
||
:point_right::point_right::point_right:**NOTE:** The codes/models/logs for submission version (without bug fixed) can be found here [commit:d2b8dbaa](http://github.com/13952522076/pointMLP-pytorch/tree/d2b8dbaa06eb6176b222dcf2ad248f8438582026).
|
||
|
||
|
||
|
||
|
||
## Install
|
||
|
||
```bash
|
||
# 1. clone this repo
|
||
git clone https://github.com/ma-xu/pointMLP-pytorch.git
|
||
cd pointMLP-pytorch
|
||
|
||
# 2. create a conda virtual environment and activate it
|
||
conda create -n pointmlp python=3.7 -y
|
||
conda activate pointmlp
|
||
|
||
# 3. install required libs, pytorch 1.8.1, torchvision 0.9.1, etc.
|
||
pip install -r requirements.txt
|
||
|
||
# 4. install CUDA kernels
|
||
pip install pointnet2_ops_lib/.
|
||
```
|
||
|
||
|
||
## Useage
|
||
|
||
### Classification ModelNet40
|
||
**Train**: The dataset will be automatically downloaded, run following command to train.
|
||
|
||
By default, it will create a fold named "checkpoints/{modelName}-{msg}-{randomseed}", which includes args.txt, best_checkpoint.pth, last_checkpoint.pth, log.txt, out.txt.
|
||
```bash
|
||
cd pointMLP-pytorch/classification_ModelNet40
|
||
# train pointMLP
|
||
python main.py --model pointMLP
|
||
# train pointMLP-elite
|
||
python main.py --model pointMLPElite
|
||
# please add other paramemters as you wish.
|
||
```
|
||
|
||
|
||
To conduct voting testing, run
|
||
```bash
|
||
# please modify the msg accrodingly
|
||
python voting.py --model pointMLP --msg demo
|
||
```
|
||
|
||
|
||
### Classification ScanObjectNN
|
||
|
||
- Make data folder and download the dataset
|
||
```bash
|
||
cd pointMLP-pytorch/classification_ScanObjectNN
|
||
mkdir data
|
||
cd data
|
||
wget http://103.24.77.34/scanobjectnn/h5_files.zip
|
||
unzip h5_files.zip
|
||
```
|
||
|
||
- Train pointMLP/pointMLPElite
|
||
```bash
|
||
# train pointMLP
|
||
python main.py --model pointMLP
|
||
# train pointMLP-elite
|
||
python main.py --model pointMLPElite
|
||
# please add other paramemters as you wish.
|
||
```
|
||
By default, it will create a fold named "checkpoints/{modelName}-{msg}-{randomseed}", which includes args.txt, best_checkpoint.pth, last_checkpoint.pth, log.txt, out.txt.
|
||
|
||
|
||
### Part segmentation
|
||
|
||
- Make data folder and download the dataset
|
||
```bash
|
||
cd pointMLP-pytorch/part_segmentation
|
||
mkdir data
|
||
cd data
|
||
wget https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip --no-check-certificate
|
||
unzip shapenetcore_partanno_segmentation_benchmark_v0_normal.zip
|
||
```
|
||
|
||
- Train pointMLP
|
||
```bash
|
||
# train pointMLP
|
||
python main.py --model pointMLP
|
||
# please add other paramemters as you wish.
|
||
```
|
||
|
||
|
||
## Acknowledgment
|
||
|
||
Our implementation is mainly based on the following codebases. We gratefully thank the authors for their wonderful works.
|
||
|
||
[CurveNet](https://github.com/tiangexiang/CurveNet),
|
||
[PAConv](https://github.com/CVMI-Lab/PAConv),
|
||
[GDANet](https://github.com/mutianxu/GDANet),
|
||
[Pointnet2_PyTorch](https://github.com/erikwijmans/Pointnet2_PyTorch)
|
||
|
||
## LICENSE
|
||
PointMLP is under the Apache-2.0 license.
|
||
Please contact the authors for commercial use.
|
||
|
||
|
||
|
||
|
||
|
||
|